Main content
MCAT
Course: MCAT > Unit 7
Lesson 3: Neuron membrane potentials- Neuron membrane potentials questions
- Neuron membrane potentials questions 2
- Neuron graded potential description
- Neuron resting potential description
- Neuron resting potential mechanism
- Neuron graded potential mechanism
- Neuron action potential description
- Neuron action potential mechanism
- Sodium-potassium pump
- Effects of axon diameter and myelination
- Action potential patterns
- Neuron action potentials: The creation of a brain signal
- Action potential velocity
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Neuron action potentials: The creation of a brain signal
Your body has nerves that connect your brain to the rest of your organs and muscles, just like telephone wires connect homes all around the world. When you want your hand to move, your brain sends signals through your nerves to your hand telling the muscles to contract. But your nerves don’t just say “hand, move.” Instead your nerves send lots of electrical impulses (called action potentials) to different muscles in your hand, allowing you to move your hand with extreme precision.
Neurons are a special type of cell with the sole purpose of transferring information around the body. Neurons are similar to other cells in that they have a cell body with a nucleus and organelles. However, they have a few extra features which allow them to be fantastic at transferring action potentials:
- dendrites: receive signals from neighboring neurons (like a radio antenna)
- axon: transmit signals over a distance (like telephone wires)
- axon terminal: transmit signals to other neuron dendrites or tissues (like a radio transmitter)
- myelin sheath: speeds up signal transmission along the axon
Concentration gradients
Concentration gradients are key behind how action potentials work. In terms of action potentials, a concentration gradient is the difference in ion concentrations between the inside of the neuron and the outside of the neuron (called extracellular fluid).
If we have a higher concentration of positively charged ions outside the cell compared to the inside of the cell, there would be a large concentration gradient. The same would also be true if there were more of one type of charged ion inside the cell than outside. The charge of the ion does not matter, both positively and negatively charged ions move in the direction that would balance or even out the gradient.
Resting membrane potential
Neurons have a negative concentration gradient most of the time, meaning there are more positively charged ions outside than inside the cell. This regular state of a negative concentration gradient is called resting membrane potential. During the resting membrane potential there are:
- more sodium ions (Nastart superscript, plus, end superscript) outside than inside the neuron
- more potassium ions (Kstart superscript, plus, end superscript) inside than outside the neuron
The concentration of ions isn’t static though! Ions are flowing in and out of the neuron constantly as the ions try to equalize their concentrations. The cell however maintains a fairly consistent negative concentration gradient (between -40 to -90 millivolts). How?
- The neuron cell membrane is super permeable to potassium ions, and so lots of potassium leaks out of the neuron through potassium leakage channels (holes in the cell wall).
- The neuron cell membrane is partially permeable to sodium ions, so sodium atoms slowly leak into the neuron through sodium leakage channels.
- The cell wants to maintain a negative resting membrane potential, so it has a pump that pumps potassium back into the cell and pumps sodium out of the cell at the same time.
How action potentials work
Action potentials (those electrical impulses that send signals around your body) are nothing more than a temporary shift (from negative to positive) in the neuron’s membrane potential caused by ions suddenly flowing in and out of the neuron. During the resting state (before an action potential occurs) all of the gated sodium and potassium channels are closed. These gated channels are different from the leakage channels, and only open once an action potential has been triggered. We say these channels are “voltage-gated” because they are open and closed depends on the voltage difference across the cell membrane. Voltage-gated sodium channels have two gates (gate m and gate h), while the potassium channel only has one (gate n).
- Gate m (the activation gate) is normally closed, and opens when the cell starts to get more positive.
- Gate h (the deactivation gate) is normally open, and swings shut when the cells gets too positive.
- Gate n is normally closed, but slowly opens when the cell is depolarized (very positive).
Voltage-gated sodium channels exist in one of three states:
- Deactivated (closed) - at rest, channels are deactivated. The m gate is closed, and does not let sodium ions through.
- Activated (open) - when a current passes through and changes the voltage difference across a membrane, the channel will activate and the m gate will open.
- Inactivated (closed) - as the neuron depolarizes, the h gate swings shut and blocks sodium ions from entering the cell.
Voltage-gated potassium channels are either open or closed.
There are three main events that take place during an action potential:
- A triggering event occurs that depolarizes the cell body. This signal comes from other cells connecting to the neuron, and it causes positively charged ions to flow into the cell body. Positive ions still flow into the cell to depolarize it, but these ions pass through channels that open when a specific chemical, known as a neurotransmitter, binds to the channel and tells it to open. Neurotransmitters are released by cells near the dendrites, often as the end result of their own action potential! These incoming ions bring the membrane potential closer to 0, which is known as depolarization. An object is polar if there is some difference between more negative and more positive areas. As positive ions flow into the negative cell, that difference, and thus the cell’s polarity, decrease. If the cell body gets positive enough that it can trigger the voltage-gated sodium channels found in the axon, then the action potential will be sent.
- Depolarization - makes the cell less polar (membrane potential gets smaller as ions quickly begin to equalize the concentration gradients) . Voltage-gated sodium channels at the part of the axon closest to the cell body activate, thanks to the recently depolarized cell body. This lets positively charged sodium ions flow into the negatively charged axon, and depolarize the surrounding axon. We can think of the channels opening like dominoes falling down - once one channel opens and lets positive ions in, it sets the stage for the channels down the axon to do the same thing. Though this stage is known as depolarization, the neuron actually swings past equilibrium and becomes positively charged as the action potential passes through!
- Repolarization - brings the cell back to resting potential. The inactivation gates of the sodium channels close, stopping the inward rush of positive ions. At the same time, the potassium channels open. There is much more potassium inside the cell than out, so when these channels open, more potassium exits than comes in. This means the cell loses positively charged ions, and returns back toward its resting state.
- Hyperpolarization - makes the cell more negative than its typical resting membrane potential. As the action potential passes through, potassium channels stay open a little bit longer, and continue to let positive ions exit the neuron. This means that the cell temporarily hyperpolarizes, or gets even more negative than its resting state. As the potassium channels close, the sodium-potassium pump works to reestablish the resting state.
Refractory Periods
Action potentials work on an all-or-none basis. This means that an action potential is either triggered, or it isn’t – like flipping a switch. A neuron will always send the same size action potential. So how do we show that some information is more important or requires our attention right now? The answer lies in how often action potentials are sent – the action potential frequency.
When the brain gets really excited, it fires off a lot of signals. How quickly these signals fire tells us how strong the original stimulus is - the stronger the signal, the higher the frequency of action potentials. There is a maximum frequency at which a single neuron can send action potentials, and this is determined by its refractory periods.
- Absolute refractory period: during this time it is absolutely impossible to send another action potential. The inactivation (h) gates of the sodium channels lock shut for a time, and make it so no sodium will pass through. No sodium means no depolarization, which means no action potential. Absolute refractory periods help direct the action potential down the axon, because only channels further downstream can open and let in depolarizing ions.
- Relative refractory period: during this time, it is really hard to send an action potential. This is the period after the absolute refractory period, when the h gates are open again. However, the cell is still hyperpolarized after sending an action potential. It would take even more positive ions than usual to reach the appropriate depolarization potential than usual. This means that the initial triggering event would have to be bigger than normal in order to send more action potentials along. Relative refractory periods can help us figure how intense a stimulus is - cells in your retina will send signals faster in bright light than in dim light, because the trigger is stronger.
Refractory periods also give the neuron some time to replenish the packets of neurotransmitter found at the axon terminal, so that it can keep passing the message along. While it is still possible to completely exhaust the neuron’s supply of neurotransmitter by continuous firing, the refractory periods help the cell last a little longer.
##Consider the following
One of the main characteristics that differentiates an action potential from a different kind of electrical signal called graded potentials is that the action potential is the major signal sent down the axon, while graded potentials at the dendrites and cell body vary in size and influence whether an action potential will be sent or not. Graded potentials are small changes in membrane potential that are either excitatory (depolarize the membrane) or inhibitory (hyperpolarize the membrane). Many excitatory graded potentials have to happen at once to depolarize the cell body enough to trigger the action potential.
Graded Potentials | Action Potentials |
---|---|
At the dendrites and cell body | At the axon |
Excitatory or inhibitory | Always excitatory |
Smaller in size | Larger voltage difference |
Triggered by input from the outside | Triggered by membrane depolarization |
Many can happen at once | Only one at a time |
Can come in different sizes | All-or-none |
Want to join the conversation?
- Easy to follow but I found the following statement rather confusing "The cell wants to maintain a negative resting membrane potential, so it has a pump that pumps potassium back into the cell and pumps sodium out of the cell at the same time"
While the cell process for maintaining a negative equilibrium would logically pump NA+ ions out, I don't see how pumping K+ in would contribute.(10 votes)- It has to do with the mechanics of the Na+/K+ pump itself -- it sort of "swaps" one ion for the other, but it does so in an uneven ratio. If it were 1-to-1, you'd be absolutely correct in assuming that it doesn't make any sense. However, the sodium/potassium pump removes 3 sodium ions from the cell while only allowing 2 potassium ions in. So each pump "cycle" would lower the net positive charge inside the cell by 1. There is actually a video here on KA that addresses this:
https://www.khanacademy.org/science/biology/membranes-and-transport/active-transport/v/sodium-potassium-pump-video(48 votes)
- How does the calcium play a role in all of this?(8 votes)
- once your action potential reaches the terminal bouton (or synaptic bulb or whatever), it triggers the opening of Ca2+ channels, and because a high extracellular concentration of Ca2+ was maintained, it will rush into the terminal region. synaptic vesicles are then prompted to fuse with the presynaptic membrane so it can expel neurotransmitters via exocytosis to the synapse. without calcium, you will be dealing with neurological deficits(8 votes)
- Hey great stuff,
I'm hoping you can clarify something for me? I understand that there's more Na+ outside the cell and more K+ inside the cell; this relates to how Na+ initially flows into the cell (depolarization) and K+ flows out of the cell (repolarization) during an action potential, correct? (And this is done via diffusion across the membrane, right?)
Ok, so then there's also the Na+/K+ ATPase. Now this is active transport, requiring ATP, therefore pumping these ions against their gradients. So this means that K+ flows in and Na+ flows out. This is the opposite of what I had just described in an action potential, which is confusing me.
Can you clarify the difference for me please? So I'm assuming that the diffusion of Na+ influx and K+ out of the cell is during an action potential, and the Na+/K+ ATPase function (in pumping these ions in the OPPOSITE direction) is to return to resting membrane potential AFTER the action potential?
It's just confusing that when talking about action potentials, we're taught that sodium and potassium are flowing both ways and I want to clarify when they flow in/out and why. thanks!(4 votes) - above there is mention the word cell wall so do neuron has it?(holes in the cell wall).(1 vote)
- I think they meant cell membrane there, I don't think any animal cells have a cell wall.(7 votes)
- What happens within a neuron when it comes active?(3 votes)
- that action potential travels down the axon, opening/closing voltage gated proteins (etc.) toward the terminal where voltage gated Ca2+ channels will open and let Ca2+ inside where the synaptic vesicles will fuse with the presynaptic membrane and let out their contents in the synapse (typically neurotransmitters).(1 vote)
- After an AP is fired the article states the cell becomes hyper polarized. It states the sodium potassium pump reestablishes the resting membrane potential. But since the pump puts three sodium ions out while bring a mere two potassium ions in, would the pump not make the cell more polarized? So what brings the cell back to its resting membrane potential? Is it a sodium leak channel?(2 votes)
- The Na/K pump does polarize the cell - the reverse is called depolarization.
Resting potential at -70 mV is a polarized state.(1 vote)
- So in a typical neuron, Potassium has a higher concentration inside the cell compared to the outside and Sodium has a higher concentration outside the cell compared to the inside. There are also more leaky Potassium channels than Sodium channels. Voltage gated sodium channel is responsible for Action potential (depolarization) while Voltage gated potassium channel and leaky potassium channel are responsible to get back to a resting state.
My question is, what if we flip everything and it's the other way around, what would happen to action potential? Sorry if this is a long question.(2 votes) - I'm confused on the all-or-nothing principle. How do you know when an action potential will fire or not? Neurons send messages through action potentials and we're constantly stimulated by our environment, so doesn't that mean action potentials are always firing? When does it not fire?(1 vote)
- The all-or-none principle is for the "response" to a stimulus. The stimulation strength can be different, only when the stimulus exceeds the threshold potential, the nerve will give a complete response; otherwise, there is no response. It's like if you touched a warm cup, there's no flinch, but if you touched a boiling pot your flinch "response" would be triggered. In this example, the temperature is the stimulus. Different temperature represents different strength of stimulation. I hope this helps.(2 votes)
- if a body does not have enough potassium, how might that affect neuronal firing?(1 vote)
- I dont know but you will get cramps from swimming if you dont eat enough potassium(1 vote)
- In an action potential graph, why does a refractory period start immediately after the triggering of an action potential and not at the start of the repolarization phase?(1 vote)