If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Introduction to magnetism

An introduction to magnetism. Created by Sal Khan.

Want to join the conversation?

  • blobby green style avatar for user Hrithik Chaudhary
    When a bar magnet is broken in the middle, what is the effect on its intensity?
    (266 votes)
    Default Khan Academy avatar avatar for user
  • leafers sapling style avatar for user hdas30
    at Sal says a magnet is created when the electrons line up. how were lodestones' electrons lined up in the first place?
    (52 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Venkat
      Lodestones were igneous rocks, which means that they were originally lava. When the lava came up through a volcano, the rock took a significant time to cool. In this time, the Earth's magnetic field automatically aligned the domains, or atoms, of the lava. Then, when the rock cooled, the atoms were set in place, making the rock magnetic. This is the process that factories use to make bar magnets today.
      (83 votes)
  • leaf grey style avatar for user Brian
    when you rub a nail across a magnet many times, the nail becomes magnetized.
    why does this work?
    (59 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Huzaifa Ahmad
      This is because of magnetic induction. Nail is made of iron. Iron is magnetized easily. But you should remember that in iron there are atomic magnets which line up with each other in groups called domains. In an un-magnetized piece of iron the magnetic domains are pointing out in all directions and so cancel out each other. So when we rub the nail with a magnet it becomes magnetized. This is because all the tiny N-Poles add up at one end and all the S-Poles add up at the other end.
      (14 votes)
  • blobby green style avatar for user Jared Wilson
    Sal talks about with electrostatics we find that a point charge whether it is an electron or proton creates its own electric "vector" field and it is a monopole. But then as he is talking about magnets he says if you were to cut a magnet in half, the two halves would create a dipole again and again. He also says even if you were to keep cutting it till you had only an electron left it would still remain a dipole. How is this possible if he stated earlier an electron has a monopole?
    (23 votes)
    Default Khan Academy avatar avatar for user
  • purple pi purple style avatar for user dayna.dale
    okay so what your saying is that the earth is a big huge magnet????
    (16 votes)
    Default Khan Academy avatar avatar for user
    • piceratops tree style avatar for user Brandon Mytty
      Yes. Electromagnetism is one of the most common sources of power on the earth. The earth is constructed with a North and South Pole and a Inner core made up of metallic composites presumably and largely iron. The Magnetic field around the earth is driven largely by this source of electromagnetism. In general the poles and the core of the earth are a lot like a battery on a massive scale. This magnetic field around the earth suffers interference from solar particles released from the sun with large electrical charges and cause the Northern Lights (Aurora Borealis). I might be wrong... and I got a little off topic.
      (52 votes)
  • winston default style avatar for user Kenny
    Why can there never be a monopole for a magnet?
    (13 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Charles LaCour
      The indications we have from some of the String Theories have given a mass for a magnetic monopole so high that we would need is way beyond anything we could produce, it predicted mass is about a Planck mass.

      In quantum field theory the difference between there being electric monopoles but not magnetic ones is because of a broken symmetry.
      (4 votes)
  • piceratops seed style avatar for user safwan
    what is the difference between electric and magnetic field ??
    (10 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Mark Zwald
      Electric fields are made by charges or changing magnetic fields and create force on charge.
      Magnetic fields are made by current (moving charge) or changing electric fields and create force on moving charges only.
      Magnetic and electric fields are two sides of the same coin but viewed from different frames of reference.
      (11 votes)
  • duskpin seedling style avatar for user Rfre
    How can I explain simple magnetic force to children ages 2 1/2-4 years of age? For example when they play with trains that have magnets that connect them, when they don't connect how can I say, well it's the magnet type that doesn't allow them to connect or does let them connect.
    (3 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Teacher Mackenzie (UK)
      at that age, it make be sufficient for them to experience the phenomenon.

      If you can find some magnets for them play with external to the toy train then, as they play, you might find some discussion starts to emerge.
      If they are sufficiently engaged, I would encourage use of proper terminology (north and south) since positive and negative can be a) just difficult to comprehend and b) confusing later in lfe

      (5 votes)
  • mr pants teal style avatar for user Therese
    At Sal says magnetism always comes in the form of a dipole, but after watching this video I read a wikipedia article that said the moon does not currently have a dipolar magnetic field. Would this be because the moon's magnetic field is so weak in comparison to ours? Or something else?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Andrew M
      Magnetism always comes in dipoles, but that does not require every planet and moon to have any magnetic field at all. It just says that if they do, they will have two poles, not one.

      (Scientists recently created a magnetic monopole in a laboratory, so it's no longer accurate to say magnets are always dipoles - but you will never encounter a monopole)
      (4 votes)
  • female robot grace style avatar for user Cynthia Zhou
    why do the charges and magnets act so similar? I mean....the like charges repel each other, and unlike charges attract each other. And similarly, the same poles of two magnets repel, and different poles attract. Is this merely a coincidence?
    (4 votes)
    Default Khan Academy avatar avatar for user

Video transcript

We've learned a little bit about gravity. We've learned a little bit about electrostatic. So, time to learn about a new fundamental force of the universe. And this one is probably second most familiar to us, next to gravity. And that's magnetism. Where does the word come from? Well, I think several civilizations-- I'm no historian-- found these lodestones, these objects that would attract other objects like it, other magnets. Or would even attract metallic objects like iron. Ferrous objects. And they're called lodestones. That's, I guess, the Western term for it. And the reason why they're called magnets is because they're named after lodestones that were found near the Greek province of Magnesia. And I actually think the people who lived there were called Magnetes. But anyway, you could Wikipedia that and learn more about it than I know. But anyway let's focus on what magnetism is. And I think most of us have at least a working knowledge of what it is; we've all played with magnets and we've dealt with compasses. But I'll tell you this right now, what it really is, is pretty deep. And I think it's fairly-- I don't think anyone has-- we can mathematically understand it and manipulate it and see how it relates to electricity. We actually will show you the electrostatic force and the magnetic force are actually the same thing, just viewed from different frames of reference. I know that all of that sounds very complicated and all of that. But in our classical Newtonian world we treat them as two different forces. But what I'm saying is although we're kind of used to a magnet just like we're used to gravity, just like gravity is also fairly mysterious when you really think about what it is, so is magnetism. So with that said, let's at least try to get some working knowledge of how we can deal with magnetism. So we're all familiar with a magnet. I didn't want it to be yellow. I could make the boundary yellow. No, I didn't want it to be like that either. So if this is a magnet, we know that a magnet always has two poles. It has a north pole and a south pole. And these were just labeled by convention. Because when people first discovered these lodestones, or they took a lodestone and they magnetized a needle with that lodestone, and then that needle they put on a cork in a bucket of water, and that needle would point to the Earth's north pole. They said, oh, well the side of the needle that is pointing to the Earth's north, let's call that the north pole. And the point of the needle that's pointing to the south pole-- sorry, the point of the needle that's pointing to the Earth's geographic south, we'll call that the south pole. Or another way to put it, if we have a magnet, the direction of the magnet or the side of the magnet that orients itself-- if it's allowed to orient freely without friction-- towards our geographic north, we call that the north pole. And the other side is the south pole. And this is actually a little bit-- obviously we call the top of the Earth the north pole. You know, this is the north pole. And we call this the south pole. And there's another notion of magnetic north. And that's where-- I guess, you could kind of say-- that is where a compass, the north point of a compass, will point to. And actually, magnetic north moves around because we have all of this moving fluid inside of the earth. And a bunch of other interactions. It's a very complex interaction. But magnetic north is actually roughly in northern Canada. So magnetic north might be here. So that might be magnetic north. And magnetic south, I don't know exactly where that is. But it can kind of move around a little bit. It's not in the same place. So it's a little bit off the axis of the geographic north pole and the south pole. And this is another slightly confusing thing. Magnetic north is the geographic location, where the north pole of a magnet will point to. But that would actually be the south pole, if you viewed the Earth as a magnet. So if the Earth was a big magnet, you would actually view that as a south pole of the magnet. And the geographic south pole is the north pole of the magnet. You could read more about that on Wikipedia, I know it's a little bit confusing. But in general, when most people refer to magnetic north, or the north pole, they're talking about the geographic north area. And the south pole is the geographic south area. But the reason why I make this distinction is because we know when we deal with magnets, just like electricity, or electrostatics-- but I'll show a key difference very shortly-- is that opposite poles attract. So if this side of my magnet is attracted to Earth's north pole then Earth's north pole-- or Earth's magnetic north-- actually must be the south pole of that magnet. And vice versa. The south pole of my magnet here is going to be attracted to Earth's magnetic south. Which is actually the north pole of the magnet we call Earth. Anyway, I'll take Earth out of the equation because it gets a little bit confusing. And we'll just stick to bars because that tends to be a little bit more consistent. Let me erase this. There you go. I'll erase my Magnesia. I wonder if the element magnesium was first discovered in Magnesia, as well. Probably. And I actually looked up Milk of Magnesia, which is a laxative. And it was not discovered in Magnesia, but it has magnesium in it. So I guess its roots could be in Magnesia if magnesium was discovered in Magnesia. Anyway, enough about Magnesia. Back to the magnets. So if this is a magnet, and let me draw another magnet. Actually, let me erase all of this. All right. So let me draw two more magnets. We know from experimentation when we were all kids, this is the north pole, this is the south pole. That the north pole is going to be attracted to the south pole of another magnet. And that if I were to flip this magnet around, it would actually repel north-- two north facing magnets would repel each other. And so we have this notion, just like we had in electrostatics, that a magnet generates a field. It generates these vectors around it, that if you put something in that field that can be affected by it, it'll be some net force acting on it. So actually, before I go into magnetic field, I actually want to make one huge distinction between magnetism and electrostatics. Magnetism always comes in the form of a dipole. What does a dipole mean? It means that we have two poles. A north and a south. In electrostatics, you do have two charges. You have a positive charge and a negative charge. So you do have two charges. But they could be by themselves. You could just have a proton. You don't have to have an electron there right next to it. You could just have a proton and it would create a positive electrostatic field. And our field lines are what a positive point charge would do. And it would be repelled. So you don't always have to have a negative charge there. Similarly you could just have an electron. And you don't have to have a proton there. So you could have monopoles. These are called monopoles, when you just have one charge when you're talking about electrostatics. But with magnetism you always have a dipole. If I were to take this magnet, this one right here, and if I were to cut it in half, somehow miraculously each of those halves of that magnet will turn into two more magnets. Where this will be the south, this'll be the north, this'll be the south, this will be the north. And actually, theoretically, I've read-- my own abilities don't go this far-- there could be such a thing as a magnetic monopole, although it has not been observed yet in nature. So everything we've seen in nature has been a dipole. So you could just keep cutting this up, all the way down to if it's just one electron left. And it actually turns out that even one electron is still a magnetic dipole. It still is generating, it still has a north pole and a south pole. And actually it turns out, all magnets, the magnetic field is actually generated by the electrons within it. By the spin of electrons and that-- you know, when we talk about electron spin we imagine some little ball of charge spinning. But electrons are-- you know, it's hard to-- they do have mass. But it starts to get fuzzy whether they are energy or mass. And then how does a ball of energy spin? Et cetera, et cetera. So it gets very almost metaphysical. So I don't want to go too far into it. And frankly, I don't think you really can get an intuition. It is almost-- it is a realm that we don't normally operate in. But even these large magnets you deal with, the magnetic field is generated by the electron spins inside of it and by the actual magnetic fields generated by the electron motion around the protons. Well, I hope I'm not overwhelming you. And you might say, well, how come sometimes a metal bar can be magnetized and sometimes it won't be? Well, when all of the electrons are doing random different things in a metal bar, then it's not magnetized. Because the magnetic spins, or the magnetism created by the electrons are all canceling each other out, because it's random. But if you align the spins of the electrons, and if you align their rotations, then you will have a magnetically charged bar. But anyway, I'm past the ten-minute mark, but hopefully that gives you a little bit of a working knowledge of what a magnet is. And in the next video, I will show what the effect is. Well, one, I'll explain how we think about a magnetic field. And then what the effect of a magnetic field is on an electron. Or not an electron, on a moving charge. See you in the next video.