Main content
Biology library
Course: Biology library > Unit 33
Lesson 2: The neuron and nervous system- Anatomy of a neuron
- Overview of neuron structure and function
- The membrane potential
- Electrotonic and action potentials
- Saltatory conduction in neurons
- Neuronal synapses (chemical)
- The synapse
- Neurotransmitters and receptors
- Q & A: Neuron depolarization, hyperpolarization, and action potentials
- Overview of the functions of the cerebral cortex
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
The membrane potential
How the resting membrane potential is established in a neuron.
Key points:
- A resting (non-signaling) neuron has a voltage across its membrane called the resting membrane potential, or simply the resting potential.
- The resting potential is determined by concentration gradients of ions across the membrane and by membrane permeability to each type of ion.
- In a resting neuron, there are concentration gradients across the membrane for start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript. Ions move down their gradients via channels, leading to a separation of charge that creates the resting potential.
- The membrane is much more permeable to start text, K, end text, start superscript, plus, end superscript than to start text, N, a, end text, start superscript, plus, end superscript, so the resting potential is close to the equilibrium potential of start text, K, end text, start superscript, plus, end superscript (the potential that would be generated by start text, K, end text, start superscript, plus, end superscript if it were the only ion in the system).
Introduction
Suppose you have a dead frog. (Yes, that's kind of gross, but let's just imagine it for a second.) What would happen if you applied an electrical stimulus to the nerve that feeds the frog's leg? Creepily enough, the dead leg would kick!
The Italian scientist Luigi Galvani discovered this fun fact back in the 1700s, somewhat by accident during a frog dissection. Today, we know that the frog's leg kicks because neurons (nerve cells) carry information via electrical signals.
How do neurons in a living organism produce electrical signals? At a basic level, neurons generate electrical signals through brief, controlled changes in the permeability of their cell membrane to particular ions (such as start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript). Before we look in detail at how these signals are generated, we first need to understand how membrane permeability works in a resting neuron (one that is not sending or receiving electrical signals).
In this article, we'll see how a neuron establishes and maintains a stable voltage across its membrane – that is, a resting membrane potential.
The resting membrane potential
Imagine taking two electrodes and placing one on the outside and the other on the inside of the plasma membrane of a living cell. If you did this, you would measure an electrical potential difference, or voltage, between the electrodes. This electrical potential difference is called the membrane potential.
Like distance, potential difference is measured relative to a reference point. In the case of distance, the reference point might be a city. For instance, we can say that Boston is 190 start text, m, i, l, e, s, end text northeast, but only if we know that our reference point is New York City.
For a cell’s membrane potential, the reference point is the outside of the cell. In most resting neurons, the potential difference across the membrane is about 30 to 90 start text, m, V, end text (a start text, m, V, end text is 1, slash, 1000 of a volt), with the inside of the cell more negative than the outside. That is, neurons have a resting membrane potential (or simply, resting potential) of about minus, 30 start text, m, V, end text to minus, 90 start text, m, V, end text.
Because there is a potential difference across the cell membrane, the membrane is said to be polarized.
- If the membrane potential becomes more positive than it is at the resting potential, the membrane is said to be depolarized.
- If the membrane potential becomes more negative than it is at the resting potential, the membrane is said to be hyperpolarized.
All of the electrical signals that neurons use to communicate are either depolarizations or hyperpolarizations from the resting membrane potential.
Where does the resting membrane potential come from?
The resting membrane potential is determined by the uneven distribution of ions (charged particles) between the inside and the outside of the cell, and by the different permeability of the membrane to different types of ions.
Types of ions found in neurons
In neurons and their surrounding fluid, the most abundant ions are:
- Positively charged (cations): Sodium (start text, N, a, end text, start superscript, plus, end superscript) and potassium (start text, K, end text, start superscript, plus, end superscript)
- Negatively charged (anions): Chloride (start text, C, l, end text, start superscript, minus, end superscript) and organic anions
In most neurons, start text, K, end text, start superscript, plus, end superscript and organic anions (such as those found in proteins and amino acids) are present at higher concentrations inside the cell than outside. In contrast, start text, N, a, end text, start superscript, plus, end superscript and start text, C, l, end text, start superscript, minus, end superscript are usually present at higher concentrations outside the cell. This means there are stable concentration gradients across the membrane for all of the most abundant ion types.
How ions cross the membrane
Because they are charged, ions can't pass directly through the hydrophobic ("water-fearing") lipid regions of the membrane. Instead, they have to use specialized channel proteins that provide a hydrophilic ("water-loving") tunnel across the membrane. Some channels, known as leak channels, are open in resting neurons. Others are closed in resting neurons and only open in response to a signal.
Some ion channels are highly selective for one type of ion, but others let various kinds of ions pass through. Ion channels that mainly allow start text, K, end text, start superscript, plus, end superscript to pass are called potassium channels, and ion channels that mainly allow start text, N, a, end text, start superscript, plus, end superscript to pass are called sodium channels.
In neurons, the resting membrane potential depends mainly on movement of start text, K, end text, start superscript, plus, end superscript through potassium leak channels. Let's see how this works.
What happens if only start text, K, end text, start superscript, plus, end superscript can cross the membrane?
The membrane potential of a resting neuron is primarily determined by the movement of start text, K, end text, start superscript, plus, end superscript ions across the membrane. So, let's get a feeling for how the membrane potential works by seeing what would happen in a case where only start text, K, end text, start superscript, plus, end superscript can cross the membrane.
We'll start out with start text, K, end text, start superscript, plus, end superscript at a higher concentration inside the cell than in the surrounding fluid, just as for a regular neuron. (Other ions are also present, including anions that counterbalance the positive charge on start text, K, end text, start superscript, plus, end superscript, but they will not be able to cross the membrane in our example.)
If potassium channels in the membrane open, start text, K, end text, start superscript, plus, end superscript will begin to move down its concentration gradient and out of the cell. Every time a start text, K, end text, start superscript, plus, end superscript ion leaves the cell, the cell's interior loses a positive charge. Because of this, a slight excess of positive charge builds up on the outside of the cell membrane, and a slight excess of negative charge builds up on the inside. That is, the inside of the cell becomes negative relative to the outside, setting up a difference in electrical potential across the membrane.
For ions (as for magnets), like charges repel each other and unlike charges attract. So, the establishment of the electrical potential difference across the membrane makes it harder for the remaining start text, K, end text, start superscript, plus, end superscript ions to leave the cell. Positively charged start text, K, end text, start superscript, plus, end superscript ions will be attracted to the free negative charges on the inside of the cell membrane and repelled by the positive charges on the outside, opposing their movement down the concentration gradient. The electrical and diffusional forces that influence movement of start text, K, end text, start superscript, plus, end superscript across the membrane jointly form its electrochemical gradient (the gradient of potential energy that determines in which direction start text, K, end text, start superscript, plus, end superscript will flow spontaneously).
Eventually, the electrical potential difference across the cell membrane builds up to a high enough level that the electrical force driving start text, K, end text, start superscript, plus, end superscript back into the cell is equal to the chemical force driving start text, K, end text, start superscript, plus, end superscript out of the cell. When the potential difference across the cell membrane reaches this point, there is no net movement of start text, K, end text, start superscript, plus, end superscript in either direction, and the system is considered to be in equilibrium. Every time one start text, K, end text, start superscript, plus, end superscript leaves the cell, another start text, K, end text, start superscript, plus, end superscript will enter it.
The equilibrium potential
The electrical potential difference across the cell membrane that exactly balances the concentration gradient for an ion is known as the equilibrium potential. Because the system is in equilibrium, the membrane potential will tend to stay at the equilibrium potential. For a cell where there is only one permeant ionic species (only one type of ion that can cross the membrane), the resting membrane potential will equal the equilibrium potential for that ion.
The steeper the concentration gradient is, the larger the electrical potential that balances it has to be. You can get an intuitive feeling for this by imagining the ion concentrations on either side of the membrane as hills of different sizes and thinking of the equilibrium potential as the force you'd need to exert to keep a boulder from rolling down the slopes between them.
If you know the start text, K, end text, start superscript, plus, end superscript concentration on both sides of the cell membrane, then you can predict the size of the potassium equilibrium potential.
Does membrane potential equal start text, K, end text, start superscript, plus, end superscript equilibrium potential?
In glial cells, which are the support cells of the nervous system, the resting membrane potential is equal to the start text, K, end text, start superscript, plus, end superscript equilibrium potential.
In neurons, however, the resting membrane potential is close but not identical to the start text, K, end text, start superscript, plus, end superscript equilibrium potential. Instead, under physiological conditions (conditions like those in the body), neuron resting membrane potentials are slightly less negative than the start text, K, end text, start superscript, plus, end superscript equilibrium potential.
What does that mean? In a neuron, other types of ions besides start text, K, end text, start superscript, plus, end superscript must contribute significantly to the resting membrane potential.
Both start text, K, end text, start superscript, plus, end superscript and start text, N, a, end text, start superscript, plus, end superscript contribute to resting potential in neurons
As it turns out, most resting neurons are permeable to start text, N, a, end text, start superscript, plus, end superscript and start text, C, l, end text, start superscript, minus, end superscript as well as start text, K, end text, start superscript, plus, end superscript. Permeability to start text, N, a, end text, start superscript, plus, end superscript, in particular, is the main reason why the resting membrane potential is different from the potassium equilibrium potential.
Let’s go back to our model of a cell permeable to just one type of ion and imagine that start text, N, a, end text, start superscript, plus, end superscript (rather than start text, K, end text, start superscript, plus, end superscript) is the only ion that can cross the membrane. start text, N, a, end text, start superscript, plus, end superscript is usually present at a much higher concentration outside of a cell than inside, so it will move down its concentration gradient into the cell, making the interior of the cell positive relative to the outside.
Because of this, the sodium equilibrium potential—the electrical potential difference across the cell membrane that exactly balances the start text, N, a, end text, start superscript, plus, end superscript concentration gradient—will be positive. So, in a system where start text, N, a, end text, start superscript, plus, end superscript is the only permeant ion, the membrane potential will be positive.
In a resting neuron, both start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript are permeant, or able to cross the membrane.
- start text, N, a, end text, start superscript, plus, end superscript will try to drag the membrane potential toward its (positive) equilibrium potential.
- start text, K, end text, start superscript, plus, end superscript will try to drag the membrane potential toward its (negative) equilibrium potential.
You can think of this as being like a tug-of-war. The real membrane potential will be in between the start text, N, a, end text, start superscript, plus, end superscript equilibrium potential and the start text, K, end text, start superscript, plus, end superscript equilibrium potential. However, it will be closer to the equilibrium potential of the ion type with higher permeability (the one that can more readily cross the membrane).
Opening and closing ion channels alters the membrane potential
In a neuron, the resting membrane potential is closer to the potassium equilibrium potential than it is to the sodium equilibrium potential. That's because the resting membrane is much more permeable to start text, K, end text, start superscript, plus, end superscript than to start text, N, a, end text, start superscript, plus, end superscript.
- If more potassium channels were to open up—making it even easier for start text, K, end text, start superscript, plus, end superscript to cross the cell membrane—the membrane would hyperpolarize, getting even closer to the potassium equilibrium potential.
- If, on the other hand, additional sodium channels were to open up—making it easier for start text, N, a, end text, start superscript, plus, end superscript to cross the membrane—the cell membrane would depolarize toward the sodium equilibrium potential.
Changing the number of open ion channels provides a way to control the cell’s membrane potential and a great way to produce electrical signals. (We will see the opening and closing of channels again when we discuss action potentials.)
The start text, N, a, end text, start superscript, plus, end superscript-start text, K, end text, start superscript, plus, end superscriptpump maintains start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript gradients
The start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript concentration gradients across the membrane of the cell (and thus, the resting membrane potential) are maintained by the activity of a protein called the start text, N, a, end text, start superscript, plus, end superscript-start text, K, end text, start superscript, plus, end superscript ATPase, often referred to as the sodium-potassium pump. If the start text, N, a, end text, start superscript, plus, end superscript-start text, K, end text, start superscript, plus, end superscriptpump is shut down, the start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript concentration gradients will dissipate, and so will the membrane potential.
Like the ion channels that allow start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript to cross the cell membrane, the start text, N, a, end text, start superscript, plus, end superscript-start text, K, end text, start superscript, plus, end superscript pump is a membrane-spanning protein. Unlike potassium channels and sodium channels, however, the start text, N, a, end text, start superscript, plus, end superscript-start text, K, end text, start superscript, plus, end superscript pump doesn’t just give start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript a way to move down their electrochemical gradients. Instead, it actively transports start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript against their electrochemical gradients.
The energy for this "uphill" movement comes from ATP hydrolysis (the splitting of ATP into ADP and inorganic phosphate). For every molecule of ATP that's broke down, 3 start text, N, a, end text, start superscript, plus, end superscript ions are moved from the inside to the outside of the cell, and 2 start text, K, end text, start superscript, plus, end superscript ions are moved from the outside to the inside.
Because 3 start text, N, a, end text, start superscript, plus, end superscript are exported for every 2 start text, K, end text, start superscript, plus, end superscript brought into the cell, the pump makes a small direct contribution to the resting membrane potential (making it slightly more negative than it would otherwise be). The pump's big contribution to the membrane potential, however, is indirect: It maintains steady start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript gradients, which give rise to the membrane potential as start text, N, a, end text, start superscript, plus, end superscript and start text, K, end text, start superscript, plus, end superscript move down their respective concentration gradients through leak channels.
Want to join the conversation?
- please correct me if i am wrong...this what i understood from this article:
-we assume that initially there is electrical neutrality across the membrane.
-then if channels are present they allow the movement of sodium and potassium ions and leads to the development of constant membrane potential.
-now as the membrane potential is constant the charges leaving the cell must equal the charge entering .
-na k pump maintains concentrations as some leakage of ions still take place.(7 votes) - do our physical movements affect ion exchange?(10 votes)
- physical movement would cause afferent sensory neurons to fire and yourself to notice that you are moving. Also moving itself would cause afferent neurons to send action potentials to the muscles, which affects the ion exchange.(11 votes)
- I understand the mechanisms, but what is the actual point in maintaining the concentration gradients?
As the article states, if the sodium/potassium pump ceased to function, the concentration gradients would dissipate. If the whole purpose of the concentration gradients is to create an action potential, why can't the membrane be non polar and then instead of depolarising the membrane at threshold, it would merely, polarise it? this would still create an action potential would it not? I don't understand WHY there is a whole mechanism to maintain these gradients when an action potential could still be created if the membrane at rest was non polar.
Is it because there wouldn't really be an resting membrane potential? I.e the membrane would never truly be at rest because of the different permeabilities and equilibrium potentials of the ions? Therefore an action potential would not be able to be created.. But if there was Na+ constantly moving in and K+ constantly moving out, why would this not keep a constant membrane potential?(5 votes)- I think it is because it is easier and faster to depolarize the membrane than to polarize it. The sodium/potassium pump needs energy and time to clear the intracellular space from sodium, and I guess it would be quite ineffective to take this mechanism for impulse transfer.
And what one might forget is that every cell has a concentration gradient! I even heard it as a definition of life, to have a specific concentration of ions which is not the same as the one surrounding the cell. This concentration gradient is important for metabolic processes, i.e. to build new molecules or to break them down, and for the osmosis - water always tries to equal concentration differences out by going towards the more salty regions. That is how we absorb water and why people can't drink sea water, for example.
So the resting potential is very important.(3 votes)
- Why Cl is not contributing much to the resting potential. More importantly, why the Cl does not move into the cell during action potential when the electrochemical gradient (charge and concentration) is in favor for Cl to move in?(4 votes)
- The membrane is relatively impermeable to Cl-, yes, but Cl- influence is also reduced because its equilibrium potential is already close to the resting membrane potential (I believe Cl- equilibrium potential is around ~71mV)! Keep in mind the equilibrium potential of ions that the membrane is more permeable to has a greater impact on resting potential than that of ions the membrane is less permeable to. So even if permeability to Cl- increased, I'm fairly certain the value of the resting potential still wouldn't be greatly affected. :)(3 votes)
- Brief but detailed summary of how resting membrane potential is generated(1 vote)
- Resting membrane potential is generated by the combination of sodium and potassium pump and the leak channels of these ions. The function of the pump is to take out three sodium from the cell and two potassium into the cell with the use of ATP (changes the shape of pump to release these ions), already with the stoichiometry difference, we see a charge difference. Furthermore, because it is more postive outside of the cell, and negative inside the cell, plasma membrane becomes more permeable to Potassium on our leak channels. Therefore, even with leak channels of both ions, potassium is more permeable. Causing a standard measurement of -70mV resting potential(8 votes)
- at resting membrane potenital do Na go in and K out? i cant understand resting membrane potential(3 votes)
- Resting membrane potential of a neuron is about -70mV which means that the inside of the neuron is 70mV less than the outside. There are more k and less NA+ inside and more NA+ and less K+ outside. It is because the cell membrane is selectively permeable which means that is allows some substances to come in while restricting the others. The cell membrane is selectively more permeable to K than Na and hence there are more k inside than the outside, and hence outside is more positive then the inside.(2 votes)
- Why is Chloride's membrane potential negative despite having a higher extracellular concentration?(3 votes)
- IT is true, Cl- ions are more concentrated on the outside than on the inside.
I can answer why is intracellular more negative - due to differences in Na/K plus die to exist negatively charged proteins in the cell.(1 vote)
- what happens when the concentration of Na is increased in the extracellular fluid, is there a depolarization or hyperpolarization?
And the same goes for the increased concentration of K in the extracellular fluid, is there a depolarization or hyperpolarization?(2 votes)- When Na is increased in the ECF it will not have any major affect on the cell, a negligible depolarization if even measurable because the higher outside gradient will help push the Na into the cell (but remember that it isn't very permeable so it's minute).
K will have a bigger effect because the extra ECF will decrease the internal leakage of K from ICF to ECF because there would be a higher gradient outside now. The end result would be in depolarizing the cell, how much would depend on how much K was added to the ECF.(4 votes)
- why do the potassium and the sodium become ions?(2 votes)
- First, defintion of an ion:
'an atom or molecule with a net electric charge due to the loss or gain of one or more electrons.'
https://www.lexico.com/en/definition/ion
So, we have ions in our cells and extracellular matrix.
Since redox reactions happen in our body, as a consequence we have ions.
Which is more important, because our nervous sysem relies on transmitting neural signal (electrical current) we have to create that electrical field somehow - that's why we have ions.
Now, the change in concentration inside and outsid eof cell helps creating resting emmbrane potential, depolarization, repolarization and generating action potential (that's how signal is porpagated).
Action potential jumps from Ranvier node to another and that way is faster conducted until it reaches synapse or final destination - where it is transmitted into sensation (in our brain) or into some action (efferent pathways).
Something as complicated as sensing that truck is runnign towards you while you are crossing the road (sorry if my example is morbid) all relies on little Na and K ions. And channels for Na and K as well. All down to the level of atoms and molecules (Biology cannot exist without Chemistry or Physics).(1 vote)
- in what ways is the Na+/K+ pump different from the K+ channel(2 votes)