Main content
Biology library
Course: Biology library > Unit 33
Lesson 1: Circulatory and pulmonary systemsHemoglobin
Hemoglobin and its role in the circulatory system. Created by Sal Khan.
Want to join the conversation?
- Where did they get the name Hemoglobin?(9 votes)
- Like many scientific/medical terms, it comes from greek roots. "Hemo-" refers to blood, and "-globin" refers to a simple type of protein.(16 votes)
- I don't understand what is porforin, if i'm spelling it right. can someone explain it to me.?(6 votes)
- Porphyrin are complex, organic, aromatic molecules which form a ring of four pyrrole units. They are generally involved in binding metal ions. Heme is the most well-known porphyrin and binds iron.
I made a model of Heme B binding iron: https://www.khanacademy.org/cs/3d-haem-b-molecule/1237400358(12 votes)
- what does the hemoglobin drop off in the lung and pick up(5 votes)
- The simple answer is that hemoglobin drops off CO2 and H+ in the lungs, but this is not exactly what is exhaled. When it unloads CO2 and H+, hemoglobin picks up O2. For a more detailed explanation, read on.
In the lungs, CO2 and H2O (water vapor) are constantly being exhaled. This constant removal of CO2 and H2O coaxes carbonic acid (H2CO3) to dissociate into H2O and CO2 (catalyzed by carbonic anhydrase) in order to replenish the pool of CO2 and H2O (which are still constantly being eliminated due to exhalation). Reference the video on Le Chatelier's principle for an explanation on why this "equilibrium shift" happens. The dissociation of H2CO3, in turn, reduces the H2CO3 pool and coaxes replenishment of H2CO3 by combining hydrogen ions (H+) with bicarbonate ions (HCO3-). The resultant effect here is the indirect removal of H+ and HCO3- from the blood. Summarizing thus far, exhalation directly removes CO2 and H2O; and this results in the indirect removal of H+ and HCO3-.
Loss of CO2 through exhalation coaxes any CO2 bound to hemoglobin to release and be exhaled. When CO2 is dumped, O2 can be picked up. Indirect loss of H+ coaxes any H+ bound to hemoglobin to release in order to make H2CO3, which then becomes CO2 and H2O and is also exhaled. When H+ releases, O2 can be picked up by hemoglobin. The indirect loss of HCO3- occurs as previously explained, ultimately also producing H2O and CO2 which are exhaled. This last mechanism is crucial because the greatest proportion of the CO2 made in the tissues is carried to the lungs in the form of HCO3- dissolved in the plasma.(13 votes)
- i don't understand allosteric inhibition.can it be further simply explained?(3 votes)
- Enzymes have an active site where they do their job - in this case they bind oxygen so they can carry it around the body. You can imagine something blocking the enzyme from doing its job by binding to the exact place where the oxygen binds and keeping the oxygen from getting to the active site. Another way to change the way the enzyme works is to bind to a second part of the molecule that is not the active site where the oxygen binds. In this case, called allosteric inhibition, binding to this other part of the molecule changes the enzyme in some way that makes it less likely to bind the oxygen. You can imagine that if a big molecule, for instance, were to bind to this "allosteric" site and push on other parts of the enzyme it might change the active site where the oxygen binds and keep it from working as well.(6 votes)
- how does it know where to go(4 votes)
- If you mean hemoglobin, it doesn't know where to go. It just gets carried inside of red blood cells around the body in the blood.(3 votes)
- im just wondering how is the heme group formed??
thanks alot appreciate the help in advance.(3 votes)- A heme group is formed when you have Iron in the center and four pyrrolic groups joined together by methine bridges(4 votes)
- whats holding the oxygen to the hemoglobin?
how do molecules stay together?(3 votes)- oxygen and hemoglobin do not 'stay' together but form a compound called 'oxyhemoglobin'.
however...molecules can stay together through various bonds such as covalent bond ,hydrogen bond or forces such as van der waals forces.(4 votes)
- Sal mentioned about the acidic environment in the muscle cell due to more CO2 ... does this mean CO2 is in the form of lacti acid? if not how is lactic acid involved in this process(bcoz i read about it in books)(2 votes)
- The main way blood is buffered from drastic changes in pH is a chemical equilibrium:
CO2 + 2 H20 <--> H2CO3 + H20 <--> (H30+) + HCO3-
The presence of larger than normal amounts of C02 drives the equilibrium more to the right, ultimately resulting in more amounts of (H3O+) which means the pH is lowered, generating an acidic environment.
This is why often before certain athletic events such as a sprinting race you will see athletes rapidly breathing. They are eliminating CO2 from their bodies so much that the equilibrium is driven to the left, which generates a basic environment (basic is the opposite of acidic) that combats and cancels out the acidity due to lactic acid buildup in the muscles.
This might be a little complex for you at the moment, but it demonstrates the importance of learning about chemistry at the same time you are learning about biology.(6 votes)
- Why are the hemoglobin's molecules curly?(3 votes)
- Because that's what an alpha helix looks like, the protein that makes hemoglobin.(2 votes)
- Why does Sal refer to hydrogen as a "proton," I thought it was an element?(2 votes)
- Hydrogen is usually 1 proton, 1 electron, and 0 neutron. But in this case, Sal is talking about a hydrogen atom with a positive charge, meaning it no longer has an electron at all! So essentially it is just a proton.(3 votes)
Video transcript
I've talked a lot about the
importance of hemoglobin in our red blood cells so I thought
I would dedicate an entire video to hemoglobin. One-- because it's important,
but also it explains a lot about how the hemoglobin-- or
the red blood cells, depending on what level you want to
operate-- know, and I have to use know in quotes. These aren't sentient beings,
but how do they know when to pick up the oxygen and when
to drop off the oxygen? So this right here, this is
actually a picture of a hemoglobin protein. It's made up of four
amino acid chains. That's one of them. Those are the other two. We're not going to go into the
detail of that, but these look like little curly ribbons. If you imagine them, they're a
bunch of molecules and amino acids and then they're curled
around like that. So this on some level
describes its shape. And in each of those groups or
in each of those chains, you have a heme group
here in green. That's where you get the
hem in hemoglobin from. You have four heme groups and
the globins are essentially describing the rest of it-- the
protein structures, the four peptide chains Now, this heme group-- this
is pretty interesting. It actually is a porphyrin
structure. And if you watch the video on
chlorophyll, you'd remember a porphyrin structure, but at
the very center of it, in chlorophyll, we had a magnesium
ion, but at the very center of hemoglobin, we have an
iron ion and this is where the oxygen binds. So on this hemoglobin, you have
four major binding sites for oxygen. You have right there, maybe
right there, a little bit behind, right there,
and right there. Now why is hemoglobin-- oxygen
will bind very well here, but hemoglobin has a several
properties that one, make it really good at binding oxygen
and then also really good at dumping oxygen when it
needs to dump oxygen. So it exhibits something called
cooperative binding. And this is just the principle
that once it binds to one oxygen molecule-- let's say
one oxygen molecule binds right there-- it changes the
shape in such a way that the other sites are more likely
to bind oxygen. So it just makes it-- one
binding makes the other bindings more likely. Now you say, OK, that's fine. That makes it a very good oxygen
acceptor, when it's traveling through the pulmonary
capillaries and oxygen is diffusing
from the alveoli. That makes it really good at
picking up the oxygen, but how does it know when to
dump the oxygen? This is an interesting
question. It doesn't have eyes or some
type of GPS system that says, this guy's running right now and
so he's generating a lot of carbon dioxide right now in
these capillaries and he needs a lot of oxygen in these
capillaries surrounding his quadriceps. I need to deliver oxygen. It doesn't know it's
in the quadraceps. How does the hemoglobin know to
let go of the oxygen there? And that's a byproduct of what
we call allosteric inhibition, which is a very fancy word,
but the concept's actually pretty straightforward. When you talk about allosteric
anything-- it's often using the context of enzymes-- you're
talking about the idea that things bind
to other parts. Allo means other. So you're binding to other parts
of the protein or the enzyme-- and enzymes are just
proteins-- and it affects the ability of the protein
or the enzyme to do what it normally does. So hemoglobin is allosterically
inhibited by carbon dioxide and by protons. So carbon dioxide can bond
to other parts of the hemoglobin-- I don't
know the exact spots-- and so can protons. So remember, acidity
just means a high concentration of protons. So if you're in an acidic
environment, protons can bond. Maybe I'll do the protons
in this pink color. Protons-- which are just
hydrogen without electrons, right-- protons can bond to
certain parts of our protein and it makes it harder for them
to hold onto the oxygen. So when you're in the presence
of a lot of carbon dioxide or an acidic environment, this
thing is going to let go of its oxygen. And it just happens to be that
that's a really good time to let go of your oxygen. Let's go back to this
guy running. There's a lot of activity in
these cells right here in his quadriceps. They're releasing a lot of
carbon dioxide into the capillaries. At that point, they're going
from arteries into veins and they need a lot of oxygen, which
is a great time for the hemoglobin to dump
their oxygen. So it's really good that
hemoglobin is allosterically inhibited by carbon dioxide. Carbon dioxide joins on
certain parts of it. It starts letting go of its
oxygen, that's exactly where in the body the oxygen
is needed. Now you're saying, wait. What about this acidic
environment? How does this come into play? Well, it turns out that most
of the carbon dioxide is actually disassociated. It actually disassociates. It does go into the plasma, but
it actually gets turned into carbonic acid. So I'll just write a little
formula right here. So if you have some CO2 and you
mix it with the water-- I mean, most of our blood, the
plasma-- it's water. So you take some carbon dioxide,
you mix it with water, and you have it in the
presence of an enzyme-- and this enzyme exists in
red blood cells. It's called carbonic
anhydrase. A reaction will occur--
essentially you'll end up with carbonic acid. We have H2CO3. It's all balanced. We have three oxygens, two
hydrogens, one carbon. It's called carbonic acid
because it gives away hydrogen protons very easily. Acids disassociate into their
conjugate base and hydrogen protons very easily. So carbonic acid disassociates
very easily. It's an acid, although I'll
write in some type of an equilibrium right there. If any of this notation really
confuses you or you want more detail on it, watch some of the
chemistry videos on acid disassociation and equilibrium
reactions and all of that, but it essentially can give away
one of these hydrogens, but just the proton and it keeps the
electron of that hydrogen so you're left with a hydrogen
proton plus-- well, you gave away one of the hydrogens so
you just have one hydrogen. This is actually a
bicarbonate ion. But it only gave away the
proton, kept the electron so you have a minus sign. So all of the charge adds up to
neutral and that's neutral over there. So if I'm in a capillary
of the leg-- let me see if I can draw this. So let's say I'm in the
capillary of my leg. Let me do a neutral color. So this is a capillary
of my leg. I've zoomed in just one
part of the capillary. It's always branching off. And over here, I have a bunch
of muscle cells right here that are generating a lot
of carbon dioxide and they need oxygen. Well, what's going to happen? Well, I have my red blood
cells flowing along. It's actually interesting--
red blood cells-- their diameter's 25% larger than
the smallest capillaries. So essentially they get squeezed
as they go through the small capillaries, which a
lot of people believe helps them release their contents and
maybe some of the oxygen that they have in them. So you have a red blood cell
that's coming in here. It's being squeezed through
this capillary right here. It has a bunch of hemoglobin--
and when I say a bunch, you might as well know right now,
each red blood cell has 270 million hemoglobin proteins. And if you total up the
hemoglobin in the entire body, it's huge because
we have 20 to 30 trillion red blood cells. And each of those 20 to 30
trillion red blood cells have 270 million hemoglobin
proteins in them. So we have a lot
of hemoglobin. So anyway, that was a little
bit of a-- so actually, red blood cells make up roughly
25% of all of the cells in our body. We have about 100 trillion
or a little bit more, give or take. I've never sat down
and counted them. But anyway, we have 270 million
hemoglobin particles or proteins in each red blood
cell-- explains why the red blood cells had to shed their
nucleuses to make space for all those hemoglobins. They're carrying oxygen. So right here we're dealing
with-- this is an artery, right? It's coming from the heart. The red blood cell is going in
that direction and then it's going to shed its oxygen
and then it's going to become a vein. Now what's going to happen is
you have this carbon dioxide. You have a high concentration
of carbon dioxide in the muscle cell. It eventually, just by diffusion
gradient, ends up-- let me do that same color-- ends
up in the blood plasma just like that and some of it
can make its way across the membrane into the actual
red blood cell. In the red blood cell, you have
this carbonic anhydrase which makes the carbon dioxide
disassociate into-- or essentially become carbonic
acid, which then can release protons. Well, those protons, we just
learned, can allosterically inhibit the uptake of oxygen
by hemoglobin. So those protons start bonding
to different parts and even the carbon dioxide that hasn't
been reacted with-- that can also allosterically inhibit
the hemoglobin. So it also bonds
to other parts. And that changes the shape of
the hemoglobin protein just enough that it can't hold onto
its oxygens that well and it starts letting go. And just as we said we had
cooperative binding, the more oxygens you have on, the better
it is at accepting more-- the opposite happens. When you start letting go of
oxygen, it becomes harder to retain the other ones. So then all of the
oxygens let go. So this, at least in my mind,
it's a brilliant, brilliant mechanism because the oxygen
gets let go just where it needs to let go. It doesn't just say, I've
left an artery and I'm now in a vein. Maybe I've gone through some
capillaries right here and I'm going to go back to a vein. Let me release my oxygen--
because then it would just release the oxygen willy-nilly
throughout the body. This system, by being
allosterically inhibited by carbon dioxide and an acidic
environment, it allows it to release it where it is most
needed, where there's the most carbon dioxide, where
respiration is occurring most vigorously. So it's a fascinating,
fascinating scheme. And just to get a better
understanding of it, right here I have this little chart
right here that shows the oxygen uptake by hemoglobin or
how saturated it can be. And you might see this in maybe
your biology class so it's a good thing
to understand. So right here, we have on the
x-axis or the horizontal axis, we have the partial pressure
of oxygen. And if you watched the chemistry
lectures on partial pressure, you know that partial
pressure just means, how frequently are you being
bumped into by oxygen? Pressure is generated by gases
or molecules bumping into you. It doesn't have to be gas,
but just molecules bumping into you. And then the partial pressure
of oxygen is the amount of that that's generated
by oxygen molecules bumping into you. So you can imagine as you go
to the right, there's just more and more oxygen around so
you're going to get more and more bumped into by oxygen. So this is just essentially
saying, how much oxygen is around as you go to
the right axis? And then the vertical axis tells
you, how saturated are your hemoglobin molecules? This 100% would mean all of the
heme groups on all of the hemoglobin molecules or proteins
have bound to oxygen. Zero means that none have. So
when you have an environment with very little oxygen-- and
this actually shows the cooperative binding-- so let's
say we're just dealing with an environment with very
little oxygen. So once a little bit of oxygen
binds, then it makes it even more likely that more and
more oxygen will bind. As soon as a little-- that's why
the slope is increasing. I don't want to go into algebra
and calculus here, but as you see, we're kind
of flattish, and then the slope increases. So as we bind to some oxygen,
it makes it more likely that we'll bind to more. And at some point, it's hard for
oxygens to bump just right into the right hemoglobin
molecules, but you can see that it kind of accelerates
right around here. Now, if we have an acidic
environment that has a lot of carbon dioxide so that the
hemoglobin is allosterically inhibited, it's not going
to be as good at this. So in an acidic environment,
this curve for any level of oxygen partial pressure or any
amount of oxygen, we're going to have less bound hemoglobin. Let me do that in a
different color. So then the curve would
look like this. The saturation curve will
look like this. So this is an acidic
environment. Maybe there's some carbon
dioxide right here. So the hemoglobin is being
allosterically inhibited so it's more likely to dump the
oxygen at this point. So I don't know. I don't know how exciting you
found that, but I find it brilliant because it really is
the simplest way for these things to dump their oxygen
where needed. No GPS needed, no robots needed
to say, I'm now in the quadriceps and the
guy is running. Let me dump my oxygen. It just does it naturally
because it's a more acidic environment with more
carbon dioxide. It gets inhibited and then the
oxygen gets dumped and ready to use for respiration.