We are surrounded by space. And that space contains lots of things. And these things have shapes. In geometry we are concerned with the nature of these shapes, how we define them, and what they teach us about the world at large--from math to architecture to biology to astronomy (and everything in between). Learning geometry is about more than just taking your medicine ("It's good for you!"), it's at the core of everything that exists--including you. Having said all that, some of the specific topics we'll cover include angles, intersecting lines, right triangles, perimeter, area, volume, circles, triangles, quadrilaterals, analytic geometry, and geometric constructions. Wow. That's a lot. To summarize: it's difficult to imagine any area of math that is more widely used than geometry.
Community Questions

Introduction to Euclidean geometry

Roughly 2400 years ago, Euclid of Alexandria wrote Elements which served as the world's geometry textbook until recently. Studied by Abraham Lincoln in order to sharpen his mind and truly appreciate mathematical deduction, it is still the basis of what we consider a first year course in geometry. This tutorial gives a bit of this background and then lays the conceptual foundation of points, lines, circles and planes that we will use as we journey through the world of Euclid.

Angles and intersecting lines

This topic continues our journey through the world of Euclid by helping us understand angles and how they can relate to each other.


In this topic you will learn about the most useful math concept for creating video game graphics: geometric transformations, specifically translations, rotations, reflections, and dilations. You will learn how to perform the transformations, and how to map one figure into another using these transformations.


If you can take one figure and flip, shift, and rotate (not resize) it to be identical to another figure, then the two figures are congruent. This topic explores this foundational idea in geometry.


Right triangles and trigonometry

Triangles are not always right (although they are never wrong), but when they are it opens up an exciting world of possibilities. Not only are right triangles cool in their own right (pun intended), they are the basis of very important ideas in analytic geometry (the distance between two points in space) and trigonometry.

Perimeter, area, and volume

A broad set of tutorials covering perimeter area and volume with and without algebra.


Special properties and parts of triangles

You probably like triangles. You think they are useful. They show up a lot. What you'll see in this topic is that they are far more magical and mystical than you ever imagined!


Analytic geometry

Geometric constructions

We now have fancy computers to help us perfectly draw things, but have you ever wondered how people drew perfect circles or angle bisectors or perpendicular bisectors back in the day. Well this tutorial will have you doing just as your grandparents did (actually, a little different since you'll still be using a computer to draw circles and lines with a virtual compass and straightedge).


All content in “Similarity”

Similarity and transformations

Two figures are similar if you can get from one to another through some combinations of translations, reflections, rotations AND DILATIONS (so you can scale up and down). This tutorial helps give us an intuition for this.

Triangle similarity

This tutorial explains a similar (but not congruent) idea to congruency (if that last sentence made sense, you might not need this tutorial). Seriously, we'll take a rigorous look at similarity and think of some reasonable postulates for it. We'll then use these to prove some results and solve some problems. The fun must not stop!

Old school similarity

These videos may look similar (pun-intended) to videos in another playlist but they are older, rougher and arguably more charming. These are some of the original videos that Sal made on similarity. They are less formal than those in the "other" similarity tutorial, but, who knows, you might like them more.