Main content
MCAT
Course: MCAT > Unit 7
Lesson 17: Integumentary system- Integumentary system questions
- Meet the skin! (Overview)
- What is skin? (Epidermis)
- What lies beneath the epidermis? (Dermis and Hypodermis)
- Where do our nails and hair come from?
- What's in sweat? (Holocrine, Apocrine, Merocrine Glands)
- LeBron Asks: Why does sweating cool you down?
- Overview of Sensation and Meissner's Corpuscle
- Pacinian's Corpuscle and Merkel's Disk
- Ruffini's Ending and Hair Follicle Receptor
- Pain and temperature
- Thermoregulation mechanisms
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Ruffini's Ending and Hair Follicle Receptor
Created by Raja Narayan.
Want to join the conversation?
- If we had no salt in our body, would we not be able to feel anything?(7 votes)
- Nope, nothing would be felt because the nervous system requires Na+, Ca2+, and K+ ions to propagate action potentials. All three form salts, and are required for additional bodily function.
Also, without salts, you wouldn't be able to think or walk or breathe!(12 votes)
- I may have just missed it in the video but which type of skin (hairy or glabrous) are ruffini's corpuscles located in?(8 votes)
- why the hair of the head to grow faster than the extremities?(3 votes)
- in>> there is afferent nerve fibers type B >> why is that ?? I thought it would be a delta type as when you remove hair from the skin you feel pain or there is another explanation for it? 4:46(1 vote)
- If somebody pulls on a hair on your arm, and maintains that tension but doesn't pluck it off, which receptor is that pain being detected by? I assume not the hair follicle receptor, as that only detects changing stimulus?(0 votes)
- The pain is detected by a different kind of neuron, a Nociceptor.(2 votes)
Video transcript
- [Voiceover] And then down to the next mechanoreceptor. This is another corpuscle right here. We're familiar with corpuscles by now, and it's named after another scientist. This is Ruffini's corpuscle. You may have actually
seen this by another term. Ruffini's Ending is
another phrase they use for this mechanoreceptor. The idea is if we have some
external stimulus again, this guy poking us all
over again, generating this force that goes deep within our skin, Ruffini's corpuscle,
which looks like this guy right here, will perceive it. It's very interesting
because there are no disks or rings like we had with
the other corpuscles. Instead, what you can kind
of clearly see right here, and this is so beautiful,
there's an actual nerve fiber right here,
and I'll outline it. So that thing right here
that's kind of being cast this way, that's the nerve fiber. This is our afferent
nerve fiber right here. Do you remember what type it is? I think I heard you say a beta, so you're absolutely right. So this is our afferent
nerve fiber, and actually this guy sort of branches
into the corpuscle. So Ruffini's corpuscle
right here has a whole bunch of afferent nerve fiber branches in it. But I didn't highlight
the whole thing here, what else do we have hanging out up here? Well the other thing
that we've got sort of coating this is collagen. Collagen you might remember
is a structural protein. So I'll draw it just all around there and I'll label it right here. So there's collagen
right here, collagen like what you might remember from the dermis. So what will happen is that if we stretch this skin up here with
this external stimulus and we stretch it hard
and we generate this force that goes deep into our
skin and kind of hits Ruffini's Ending right here,
it'll cause the collagen here to shift and be perturbed. As you might notice, the
collagen is very intimately connected to the nerve fiber branches here and as the collagen shifts
it opens up ion channels on these nerve branches that allow sodium that's kind of hanging out in the extra cellular matrix to sneak in. It will sneak in and then kind of go along this afferent nerve fiber to generate an action potential and move on to the central nervous system. It's really interesting
because as long as this stretcher, this stimulus, is being applied to our skin, we're going
to have the collagen being stretched and pushed out of the way to allow sodium or other ions to enter into our afferent nerve fiber. So you might have guessed
this is going to be one of those receptors that respond to sustained touch, but
the trick here is because this depends heavily on
collagen you've got to think, what part of our skin has the most amount of collagen? Well we're going to have
to go pretty deep for that because the part of our
skin that has collagen is the dermis. So it'll be the dermis, but
the dermis has two layers and the part of the dermis
that has the most collagen is the reticular dermis. So that's how you can reason that out. It's sustained touch
that causes the collagen to move and allow sodium
to keep on entering. So where do we have the most collagen? The reticular dermis,
and that's pretty deep. Awesome. Now let's move on to the
last mechanoreceptor. The last mechanoreceptor
we're going to talk about is called a hair follicle receptor. I'm hoping there are some neurons firing in your brain right now
about this because we talked a little earlier
about a non-hairy receptor, and now we're talking
specifically about hair. So this should be a callback to the hairy mechanoreceptor that'll close that story that we talked
about at the beginning. Likewise, I'm going to draw this stimulus a little differently. This perturbation right
here will be something like this and I'll draw
the nail if this is going to be like a finger, and
it's kind of initiating a force in that direction. If this is over a part
of skin that's relatively hairy and there was hair here, the hair will be deflected. So that is deflected hair, very beautiful shaft of hair right here that goes deep into the skin because you remember that hair protrudes from a follicle. So there's the hair shaft
that goes at the bottom here. I'll draw a little follicle that kind of nests it right here. So it kind of goes like this right here, and that goes in the back, and that comes out at the front. The interesting thing
about the hair follicle is that there is a nerve
fiber that is actually wrapped around the part
of the hair that sits in the follicle, and sure enough this is an afferent nerve fiber,
and a beta nerve fiber. What you'll notice is that when the hair is deflected that allows for ions to leak into this afferent nerve
kind of where the hair and the nerve are interfacing,
and when it leaks in it kind of enters and
goes along the length of this nerve and goes down here. That generates an action
potential which can then convey a signal to our
central nervous system. This all started from hair deflection. Hair deflection was the impetus for this signal to occur. So this is going to be used
to perceive light touch because we're not even
touching the skin right here. We're actually just touching the hair, so it's light touch on hairy skin. So light touch on hairy
skin because our hairs are being deflected as
we perceive the stimulus. While the hair kind of runs many layers of skin, remember that
the follicle itself, this guy sits anchored
in the reticular dermis. It sits in the reticular
dermis and so that's the location we subscribe the
hair follicle receptor to. Lastly, as long as we're kind of pushing along right here, what'll
happen is that the sodium will leak in so long as
there is an active space that's present, but because
the reticular dermis is a place of such thick,
dense connective tissue if we push the hair
shaft and make an opening right here, remember that there's a ton of collagen kind of sitting
around that can come and fill the gap and just block it so sodium could not enter. So what does that mean? This implies then that we
need constantly changing stimuli in order to have
a signal be generated. So this is the third of
three mechanoreceptors that requires constantly changing stimuli so that the hair shaft
can constantly be opening up a gap for sodium to enter. It has to do so around so much collagen that will plug the opening if we just have the hair held, deflected. That's the whole point
of why you don't notice a hairband that you might be wearing over a long period of time
because that's definitely deflecting your hair, but
over time it's as noticeable as a smooth cotton t-shirt. It's there, but you're not
constantly detecting it. It's important to emphasize
that this is a very essential distinction
from the other type of light touch we mentioned
earlier with Merkel's disk.