Main content
Physics library
Course: Physics library > Unit 3
Lesson 2: Normal force and contact forceNormal force and contact force
The force that keeps a block of ice from falling towards the center of the earth. Created by Sal Khan.
Want to join the conversation?
- If you stripped all of the electrons from an atom, does that mean it could pass through matter?(82 votes)
- Yes!
You just re-invented famous Rutherford experiment!
http://www.youtube.com/watch?v=5pZj0u_XMbc(85 votes)
- I'm confused. It sounds like 'normal' force and 'contact' force describe the same thing. If I understand correctly, 'contact' force is happening on an atomic level between the object and the surface, which results both in friction and not allowing the object to pass through the surface. If the contact force is responsible for not allowing the object to pass through the surface, then isn't the normal force part of the contact force? Or is it something completely separate?(11 votes)
- At around, Sal begins to explain that there needs to be a force to oppose the weight of the ice cube. At 3:30, he calls that the normal force. The normal force is a force perpendicular to the ground that opposes the downward force of the weight of the object. That's all there is to it and you don't have to think of it in terms of individual atoms in most problems you come across. 5:10
The 'normal' force is a type of 'contact' force. What Sal doesn't clarify in this video is that the contact force is ANY force that results when two things (and their atoms and molecules) touch each other. It's a general term that can refer to normal force, friction, collision force, tension, etc. For example, if you throw a ball at a wall and it hits the wall at an acute angle, the force at the angle of contact on the ball is a contact force. Don't confuse this force with normal force. Remember the term "normal force" specifically refers to a force that's perpendicular to a surface. So if a contact force is, for example, at a 45 degree angle, it can't be considered a normal force.(61 votes)
- what is a situation where no normal force is acting upon a person.(15 votes)
- well, it depends:
1. If you are on earth´s surface you´ll just pass through earth till you´ll get fused into earth mantel and PAM PAM PAM you are one with the earth and you the earth is one with you.
2. If you are in deep space on a platform and suddently there is no normal force then if we supposely tell that there are no other forces applying on you then you´ll just float around because there is no gravity net force that is strong enough to make you go through the platform so yeah in both case it wouldn´t end so well for you...(3 votes)
- Does Newtons 3rd Law apply in deep space vaccum?(7 votes)
- Yes. That is why it is unsafe to spacewalk without a tether as a simple push will send you floating away forever (because there is no friction or air resistance to counteract equal/opposite reactionary force).(15 votes)
- So, normal force would be the "reaction" of the force of gravity? I don't get it(11 votes)
- The word "Normal" really just means "perpendicular to a surface". The "normal force", as you are using the term, is referring to the force that a surface, like a table, would exert on an object, like a box, to support its weight (the "weight" is the force an object exerts due to the acceleration of gravity). If the table is level, that force is equal and opposite to the weight of the box, and so is the only "reaction" to gravity.
If the table is not level, the "normal force" will no longer be directly opposite gravity. In a simple static problem, the normal force will be equal to the component of the weight which is perpendicular to the table. The remaining weight will need to be supported by the addition of friction or an applied force.(2 votes)
- what happens when the constant moving block gets tilted to the left and hits the other block?
will the stationary block go as fast as the other block goes on impact?(7 votes)- Let's just take out the tilt and say the block is moving at 5 m/s to the left, on a collision course with the stationary block. Now think of Newton's 3rd law of motion: Every action has an equal and opposite reaction. The force will be divided between the two blocks and they will both move away from each other at 2.5 m/s assuming no energy lost in the collision.(7 votes)
- The electrostatic force between to molecules makes them repel each other and this force gets stronger the closer they are to each other so i guess this means they never actually come into contact. Does this mean we never actually 'touch' anything or do the particles eventually come into contact?(6 votes)
- wow; cool question.
My answer is this; 'it depends on how you define touch'. and I encourage you to have a go at producing your own definition
This also raises the question of how BIG the atom is. ie how do you define 'size'?
Remember, you are talking about the repulsion between electrons here right? The outer shells of the molecules fixed in the two materials.
To develop your idea:
if we push two protons together....at what point would they 'touch' in your definition?
Now if we keep pushing the protons until they get very close (about a proton width apart) then another force comes into action; the strong nuclear force and this is a) attractive and b) much stronger than the electrostatic force. So the protons can 'stick' together, forming a larger atom. However, this is unstable and neutrons will also be required to help it all stick together.(6 votes)
- If we call Gravity and Normal force Action-Reaction pair then it would be wrong right? Since gravity is not a force exerted by the earth but the object!
Am I correct?(2 votes)- That is wrong. Gravity and normal are not a third law pair because they act on the same object. Third law pairs act on different objects. They also have to be the same "kind" of force: gravity pairs with gravity, electric pairs with electric, etc.(3 votes)
- so normal force is the force that keeps us from falling through the ground(2 votes)
- Correct, provided you are standing on a surface capable of providing an equal and opposite reaction force to your weight, without collapsing.(2 votes)
- i cant understand what is the difference between normal and contact force(2 votes)
- Contact force is a force which acts on the point of contact of objects. Contact force can be continuous or momentary.The former is known as the continuous force (like pushing an object along the floor) and the later is known as the impulsive force (like kicking a soccer ball). The contact force (F) obeys the fundamental force equation defined by Newton's 2nd law of motion i.e. F=ma, in case of impulsive force a modified equation is more appropriate to use which is derived as follows...F=ma ; F x t = m x t x a ( 't' is the time for which is the force is applied to the object); F x t=mv=momentum..now different types contact forces are frictional force, tension force, NORMAL FORCE etc..So normal force is a contact force only or more precisely a component of the contact force which acts perpendicular to the surface of contact...e.g. surface of the ice lake preventing the ice block to fall down as described in the video....(2 votes)
Video transcript
Let's say that I have a
huge, maybe frozen over lake, or maybe it's a big pond. So I have a huge surface of
ice over here-- my best attempt to draw a flat surface
of ice-- and I'm going to put two
blocks of ice here. So I'm going to put
one block of ice just like this, one block
of ice right over here. And then I'm going to put
another block of ice right over here. And then another block
of ice right over here. And these blocks of
ice are identical. They're both 5 kilograms. They are both 5 kilograms--
let me write this down. So they are both 5 kilograms. Or both of their masses, I
should say, are 5 kilograms. And the only difference
between the two is that relative to
the pond, this one is stationary-- this
one is stationary-- and this one is moving
with a constant velocity-- constant velocity. Constant velocity in the
right-wards direction. And let's say that
its constant velocity is at 5 meters per second--
5 meters per second. And the whole reason why I made
blocks of ice on top of ice is that we're going to
assume, at least for the sake of this video, that
friction is negligible. Now what does Newton's
First Law of Motion tell us about something that
is either not in motion-- or you could view this as
a constant velocity of 0-- or something that has
a constant velocity? Well Newton's First
Law says, well look, they're going to keep
their constant velocity or stay stationary, which is
the constant velocity of 0, unless there is some
unbalance, unless there is some net force
acting on an object. So let's just think
about it here. In either of these
situations, there must not be any unbalanced
force acting on them. Or their must not
be any net force. But if you think
about it, if we're assuming that these
things are on Earth, there is a net force
acting on both of them. Both of them are at the
surface of the Earth, and they both have
mass, so there will be the force of
gravity acting downwards on both of them. There is going to be the
downward force of gravity on both of these blocks of ice. And that downward force of
gravity, the force of gravity, is going to be equal to
the gravitational field near the surface of the
Earth, times-- which is a vector-- times
the mass of the object. So times 5 kilograms. This right over here is 9.8
meters per second squared. So you multiply that times 5. You get 49 kilogram meter
per second squared, which is the same thing as 49 newtons. So this is a little bit
of a conundrum here. Newton's First Law
says, an object at rest will stay at rest, or
an object in motion will stay in motion, unless
there is some unbalanced, or unless there
is some net force. But based on what
we've drawn right here, it looks like there's
some type of a net force. It looks like I have 49 newtons
of force pulling this thing downwards. But you say, no, no no, Sal. Obviously this thing won't
start accelerating downwards because there's ice here. Its resting on a big
pool of frozen water. And so my answer to you is,
well, if that's your answer, then what is the resulting
force that cancels out with gravity to keep
these blocks of ice, either one of them,
from plummeting down to the core of the Earth? From essentially
going into free fall, or accelerating towards
the center of the Earth? And you say, well, I guess if
these things would be falling, if not for the ice,
the ice must be providing the
counteracting force. And you are absolutely correct. The ice is providing
the counteracting force in the opposite direction. So the exact magnitude
of force, and it is in the opposite direction. And so if the force of gravity
on each of these blocks of ice are 49 newtons downwards
it is completely netted off by the force of
the ice on the block upwards. And that will be a force 49
newtons upwards in either case. And now, hopefully,
it makes sense that Newton's First
Law still holds. We have no net force on this
in the vertical direction, actually no net force on
this in either direction. That's why this guy
has a 0 velocity in the horizontal direction. This guy has a constant velocity
in the horizontal direction. And neither of them
are accelerating in the vertical direction. Because you have the force
of the ice on the block, the ice is supporting
the block, that's completely
counteracting gravity. And this force, in this example,
is called the normal force. This is the normal force--
it's 49 newtons upwards. This right here is
the normal force. And we'll talk more about the
normal force in future videos. The normal force
is the force, when anything is resting
on any surface that's perpendicular to that surface. And it's going to start
to matter a lot when we start thinking about
friction and all the rest. So what we'll see in future
videos, when you have something on an incline, and let's say
I have a block on an incline like this. The normal force
from the, I guess you could say, this
wedge on the block, is going to be perpendicular
to the surface. And if you really think
about what's happening here, it's fundamentally an
electromagnetic force. Because if you really zoomed
in on the molecules of the ice right over here, even better
the atoms of the ice here. And you really zoomed in on
the atoms or the molecules of the ice up here, what's
keeping this top block of ice from falling down
is that in order for it to go through its
molecules would have to kind of compress against, or I guess
it would have to get closer to, the water molecules
or the individual atoms in this ice down here. And the atoms, let me
draw it on an atomic level right over here. So maybe, let me draw one
of this guy's molecules. So you have an oxygen
with 2 hydrogens and it forms this big
lattice structure. And we can talk about more of
that in the chemistry playlist. And let's talk about this ice
as one of these molecules. So maybe it looks
something like this. And it has its 2 hydrogens And so what's keeping these guys
from getting compressed, what's keeping this block of ice
from going down further, is the repulsion between the
electrons in this molecule and the electrons
in that molecule. So on a macro level we view
this is kind of a contact force. But on a microscopic
level, on an atomic level, it's really just electromagnetic
repulsion at work.