If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Impulse

Learn what impulse is.

What is impulse?

Impulse is a term that quantifies the overall effect of a force acting over time. It is conventionally given the symbol J and expressed in Newton-seconds.
For a constant force, J=FΔt.
As we saw earlier, this is exactly equivalent to a change in momentum Δp. This equivalence is known as the impulse-momentum theorem. Because of the impulse-momentum theorem, we can make a direct connection between how a force acts on an object over time and the motion of the object.
One of the reasons why impulse is important and useful is that in the real world, forces are often not constant. Forces due to things like people and engines tend to build up from zero over time and may vary depending on many factors. Working out the overall effect of all these forces directly would be quite difficult.
When we calculate impulse, we are multiplying force by time. This is equivalent to finding the area under a force-time curve. This is useful because the area can just as easily be found for a complicated shape—variable force—as for a simple rectangle—constant force. It is only the overall net impulse that matters for understanding the motion of an object following an impulse.
The concept of impulse that is both external and internal to a system is also fundamental to understanding conservation of momentum.

Momentum in space

Most people are familiar with seeing astronauts working in orbit. They appear to effortlessly push around freely floating objects. Because astronauts and the objects they are working with are both in free-fall, they do not have to contend with the force of gravity. However, heavy moving objects still possess the same momentum that they do on earth, and it can be just as difficult to change this momentum.
Suppose that an emergency occurs on a space station and an astronaut needs to manually move a free-floating 4,000 kg space capsule away from a docking area. On earth, the astronaut knows she can hold a 50 kg weight above herself for 3 seconds. How quickly could she get the capsule moving?
We first calculate the total impulse that the astronaut can apply. Note that the astronaut is pushing vertically in both cases so we don't need to keep track of the direction of the force.
J=(mg)Δt=50 kg9.81 m/s23 s=1471.5 Ns
And, by the impulse-momentum theorem, we can find the velocity of the spacecraft:
1471.5 Ns4000 kg=0.37 m/s

Impulse of an aircraft

A Boeing 747 aircraft has four engines, each of which can produce a thrust force of up to 250 kN. It takes around 30 s for the aircraft to get up to take-off speed. The thrust produced by the engines during take off is approximated by the force-time curve shown below.
CF6 Engine thrust during take off of Boeing 747 [1]
CF6 Engine thrust during take off of Boeing 747 [1]
Exercise 1a: What is the total impulse produced by the aircraft in getting up to take-off speed?

Want to join the conversation?

No posts yet.