Main content
Health and medicine
Course: Health and medicine > Unit 11
Lesson 1: Muscle contraction- Myosin and actin
- How tropomyosin and troponin regulate muscle contraction
- Role of the sarcoplasmic reticulum in muscle cells
- Anatomy of a skeletal muscle cell
- Neuromuscular junction, motor end-plate
- Three types of muscle
- Calcium puts myosin to work
- Type 1 and type 2 muscle fibers
- Thermoregulation mechanisms
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Role of the sarcoplasmic reticulum in muscle cells
Explore the role of the sarcoplasmic reticulum in muscle cells, crucial for muscle contraction and relaxation. Learn how calcium ions are regulated, triggering muscle contraction when released into the cell's cytoplasm. Understand the interaction between troponin, tropomyosin, myosin, and actin, and how the nervous system controls these processes. Created by Sal Khan.
Want to join the conversation?
- how about hypocalcemia (low calcium levels in the body)? its cardinal sign is having muscle spasms. how does that happen when low Ca++ levels actually means relaxation?(42 votes)
- When extracellular Ca2+ concentrations fall too low, the nervous system becomes more excitable as it become more permeable to sodium ion. When extracellular Ca2+ concentrations fall to ~50%, spontaneous action potentials occur, causing tetany due to an overactive Peripheral Nervous System. Seizures may also occur.
Hope that helps!
Ryan Grannell, 2nd Biochemistry(56 votes)
- Where do the Calcium ions in the Sarcoplasmic Reticulum come from?(8 votes)
- Continuous capillaries through the perimysium, into the fascicles and myocytes.(6 votes)
- We have discussed in NCRT that ca++ ions enter the sarcoplasm when an action potential is generated in the neromuscular jun. and binds the sub-unit of troponin and remove the masking of active sites, and myosin binds the actin when an energy is produced aft ATP hydrolysis.but in your vedio you have said that ca++ enter into the sarcoplasmic reticulum when ATP hydrolysis takes place . can u please explain this ?(vedio-- 4:42) 4:59(6 votes)
- @, when you say that Ca2+ is released out of the sarcoplasmic reticulum, and into the inside of the sarcolemma, wouldn't the +ve Na+s repel them? So not many Ca2+ can leave the SR. 12:05(6 votes)
- That's an excellent question. Mostly it happens because the Ca2+ concentration in the cytosol is very, very low at rest - on the order of nmol/L, typically. This means that the Ca2+ concentration gradient (and equilibrium potential) is usually particularly big, and that it doesn't take a lot of calcium to greatly increase a very low initial concentration. For the cells, putting the Ca2+ back into the SR is much harder than getting it back out, and means a lot of extra work for the sodium-calcium exchangers and the Na+/K+-ATPases to reestablish the initial concentration gradient.(6 votes)
- I have two questions. 1. How would you compare a vesicle to the Sarcoplasmic Reticulum?
2. How does a vesicle actually store things inside it? Does it have pumps to draw things inside it?(5 votes)- 1. Not all membranes are the same! Vesicles and sarcoplasmic reticulum have different membrane protein compositions. Exocytotic vesicles / synaptic vesicles I think are clathrin coated so that they do not fuse with the synapse membrane until signaled. Sarcoplasmic reticulum has those Calcium pumps as stated to concentrate and store Ca++, and have that protein bridge that is under study.
2. Vesicles are packaged from the endoplasmic reticulum to Golgi apparatus to vesicle form. If there is a protein to be stored in a vesicle, that protein is actually synthesized/translated directly into the pre-vesicle by bound ribosomes on the ER ("rough" ER). Not sure about non-protein things, though.(4 votes)
- What is the proper function of the sacroplasmic reticulum in a muslce contraction?(2 votes)
- The sarcoplasmic reticulum releases calcium ions during muscle contraction and absorb them during relaxation.(6 votes)
- I wonder when people will find out more about the 'mystery box' and why it's so hard to study.(4 votes)
- What role does the sarcoplasm reticulum have in sarcoidosis? I have sarcoidosis, with calcium present in my lungs.(4 votes)
- Muscle involvement in sarcoidosis is rare and usually asymptomatic.
Look at this one:
Sarcoidosis is a granulomatous disease of unknown etiology that involves multiple systems. It most commonly affects the lungs, lymph nodes, skin, and eyes but can also affect other organs and systems, including the musculoskeletal system.
Meaning that it is not known whether sarcoplasmic reticulum plays a role...
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083650/(1 vote)
- Hello!
Do Actin, Myosin, troponin and tropomyosin remain inside the muscle cells?
I mean, if they remain in the cytoplasm of muscle cells, then why would contraction/relaxation of actin cause net movement of the muscle cell?
Consider, for example, kicking your friend sitting on a plane next to you, doesn't affect the plane.(3 votes)- Actin, myosin, troponin and tropomyosin are all parts of the sarcomere. The sarcomere is the contracting unit that is repeated down the entire length of the muscle fiber or cell, If you take your hands and over lap your fingers slightly, then you are mimicking the relaxed sarcomere. If you inter-lace your fingers and push your fingers together, then you are mimicking the contracted sarcomere. When hundreds of sarcomeres contract and actin slides over myosin,(like your fingers) and they pull on the tendon attached to the bone and the leg kicks out. The only time these proteins leave the cell is when the cell is damaged and we analyze blood to identify that troponin is floating in the plasma. Perhaps a link to Crash Course biology would help.
https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crash-course-biology-science/v/crash-course-biology-130?modal=1(3 votes)
- I have heard that low Na+ due to physical exertion and loss of Na+ from sweat can cause muscle cramps, how is this explained physiologically?(4 votes)
- Because the whole homeostasis is distorted and shifted. Once you create disbalance in one ion, you create disbalance in the whole body. Ions are connected and intertwined. Loss of Na is followed by loss of Ca and K as well.(1 vote)
Video transcript
We know from the last video that
if we have a high calcium ion concentration inside of the
muscle cell, those calcium ions will bond to the troponin
proteins which will then change their shape in such a way
that the tropomyosin will be moved out of the way and so
then the myosin heads can crawl along the actin filaments
and them we'll actually have muscle
contractions. So high calcium concentration,
or calcium ion concentration, we have contraction. Low calcium ion concentration,
these troponin proteins go to their standard confirmation and
they pull-- or you can say they move the tropomyosin back
in the way of the myosin heads-- and we have
no contraction. So the next obvious question
is, how does the muscle regulate whether we have high
calcium concentration and contraction or low calcium
concentration and relaxation? Or even a better question
is, how does the nervous system do it? How does the nervous system tell
the muscle to contract, to make its calcium
concentration high and contract or to make it
low again and relax? And to understand that, let's
do a little bit a review of what we learned on the
videos on neurons. Let me draw the terminal
junction of an axon right here. Instead of having a synapse
with a dendrite of another neuron, it's going to have
a synapse with an actual muscle cell. So this is its synapse with
the actual muscle cell. This is a synapse with an
actual muscle cell. Let me label everything just
so you don't get confused. This is the axon. We could call it the terminal
end of an axon. This is the synapse. Just a little terminology from
the neuron videos-- this space was a synaptic cleft. This is the presynaptic
neuron. This is-- I guess you could
kind of view it-- the post-synaptic cell. It's not a neuron
in this case. And then just so we
have-- this is our membrane of muscle cell. And I'm going to do-- probably
the next video or maybe a video after that, I'll actually
show you the anatomy of a muscle cell. In this, it'll be a little
abstract because we really want to understand how
the calcium ion concentration is regulated. This is called a sarcolemma. So this is the membrane
of the muscle cell. And this right here-- you could
imagine it's just a fold into the membrane of
the muscle cell. If I were to look at the surface
of the muscle cell, then it would look like a little
bit of a hole or an indentation that goes into the
cell, but here we did a cross section so you can imagine it
folding in, but if you poked it in with a needle or
something, this is what you would get. You would get a fold
in the membrane. And this right here is
called a T-tubule. And the T just stands
for transverse. It's going transverse to the
surface of the membrane. And over here-- and this is the
really important thing in this video, or the
really important organelle in this video. You have this organelle inside
of the muscle cell called the sarcoplasmic reticulum. And it actually is very similar
to an endoplasmic reticulum in somewhat of what
it is or maybe how it's related to an endoplasmic
reiticulum-- but here its main function is storage. While an endoplasmic reticulum,
it's involved in protein development and it has
ribosomes attached to it, but this is purely a storage
organelle. What the sarcoplasmic reticulum
does it has calcium ion pumps on its membrane and
what these do is they're ATP ases, which means that they
use ATP to fuel the pump. So you have ATP come in, ATP
attaches to it, and maybe a calcium ion will attach to it,
and when the ATP hydrolyzes into ADP plus a phosphate
group, that changes the confirmation of this protein
and it pumps the calcium ion in. So the calcium ions
get pumped in. So the net effect of all of
these calcium ion pumps on the membrane of the sarcoplasmic
reticulum is in a resting muscle, we'll have a very high
concentration of calcium ions on the inside. Now, I think you could
probably guess where this is going. When the muscle needs to
contract, these calcium ions get dumped out into the
cytoplasm of the cell. And then they're able to bond
to the troponin right here, and do everything we talked
about in the last video. So what we care about is, just
how does it know when to dump its calcium ions into the
rest of the cell? This is the inside
of the cell. And so this area is what the
actin filaments and the myosin heads and all of the rest,
and the troponin, and the tropomyosin-- they're all
exposed to the environment that is over here. So you can imagine-- I could
just draw it here just to make it clear. I'm drawing it very abstract. We'll see more of the structure
in a future video. This is a very abstract drawing,
but I think this'll give you a sense of
what's going on. So let's say this neuron-- and
we'll call this a motor neuron-- it's signaling for
a muscle contraction. So first of all, we know how
signals travel across neurons, especially across axons with
an action potential. We could have a sodium
channel right here. It's voltage gated so you have
a little bit of a positive voltage there. That tells this voltage gated
sodium channel to open up. So it opens up and allows even
more of the sodium to flow in. That makes it a little bit
more positive here. So then that triggers the next
voltage gated channel to open up-- and so it keeps traveling
down the membrane of the axon-- and eventually, when you
get enough of a positive threshold, voltage gated calcium
channels open up. This is all a review
of what we learned in the neuron videos. So eventually, when it gets
positive enough close to these calcium ion channels, they
allow the calcium ions to flow in. And the calcium ions flow in and
they bond to those special proteins near the synaptic
membrane or the presynaptic membrane right there. These are calcium ions. They bond to proteins that
were docking vesicles. Remember, vesicles were just
these membranes around neurotransmitters. When the calcium binds to those
proteins, it allows exocytosis to occur. It allows the membrane of the
vesicles to merge with the membrane of the actual
neuron and the contents get dumped out. This is all review from
the neuron videos. I explained it in much more
detail in those videos, but you have-- all of these neurotransmitters get dumped out. And we were talking about the
synapse between a neuron and a muscle cell. The neurotransmitter
here is acetylcholine. But just like what would happen
at a dendrite, the acetylcholine binds to receptors
on the sarcolemma or the membrane of the muscle cell
and that opens sodium channels on the muscle cell. So the muscle cell also has a a
voltage gradient across its membrane, just like
a neuron does. So when this guy gets some
acetylcholene, it allows sodium to flow inside
the muscle cell. So you have a plus there and
that causes an action potential in the muscle cell. So then you have a little bit
of a positive charge. If it gets high enough to a
threshold level, it'll trigger this voltage gated channel right
here, which will allow more sodium to flow in. So it'll become a little
bit positive over here. Of course, it also has potassium
to reverse it. It's just like what's going
on in a neuron. So eventually this action
potential-- you have a sodium channel over here. It gets a little bit positive. When it gets enough positive,
then it opens up and allows even more sodium to flow in. So you have this action
potential. and then that action potential--
so you have a sodium channel over here-- it
goes down this T-tubule. So the information from the
neuron-- you could imagine the action potential then turns into
kind of a chemical signal which triggers another
action potential that goes down the T-tubule. And this is the interesting
part-- and actually this is an area of open research right
now and I'll give you some leads if you want to read more
about this research-- is that you have a protein complex that
essentially bridges the sarcoplasmic reticulum
to the T-tubule. And I'll just draw it as
a big box right here. So you have this protein
complex right there. And I'll actually show it--
people believe-- I'll sort some words out here. It involves the proteins
triadin, junctin, calsequestrin, and ryanodine. But they're somehow involved in
a protein complex here that bridges between the T-tubule the
sarcoplasmic reticulum, but the big picture is what
happens when this action potential travels down here--
so we get positive enough right around here, this complex
of proteins triggers the release of calcium. And they think that the
ryanodine is actually the part that actually releases the
calcium, but we could just say that it-- maybe it's triggered
right here. When the action potential
travels down-- let me switch to another color. I'm using this purple
too much. When the action potential gets
far enough-- I'll use red right here-- when the action
potential gets far enough-- so this environment gets a little
positive with all those sodium ions flowing in, this mystery
box-- and you could do web searches for these proteins. People are still trying to
understand exactly how this mystery box works-- it triggers
an opening for all of these calcium ions to escape
the sarcoplasmic reticulum. So then all these calcium ions
get dumped into the outside of the sarcoplasmic reticulum
into-- just the inside of the cell, into the cytoplasm
of the cell. Now when that happens, what's
doing to happen? Well, the high calcium
concentration, the calcium ions bond to the troponin, just
like what we said at the beginning of the video. The calcium ions bond to the
troponin, move the tropomyosin out of the way, and then the
myosin using ATP like we learned two videos ago can start
crawling up the actin-- and at the same time, once the
signal disappears, this thing shuts down and then these
calcium ion pumps will reduce the calcium ion concentration
again. And then our contraction will
stop and the muscle will get relaxed again. So the whole big thing here is
that we have this container of calcium ions that, when the
muscles relax, is essentially taking the calcium ions out of
the inside of the cell so the muscle is relaxed so that you
can't have your myosin climb up the actin. But then when it gets the
signal, it dumps it back in and then we actually have a
muscle contraction because the tropomyosin gets moved out of
the way by the troponin., So I don't know.
That's pretty fascinating. It's actually even fascinating
that this is still not completely well understood. This is an active-- if you want
to become a biological researcher, this could be an
interesting thing to try to understand. One, it's interesting just from
a scientific point of view of how this actually
functions, but there's actually-- there's maybe
potential diseases that are byproducts of malfunctioning
proteins right here. Maybe you can somehow make these
things perform better or worse, or who knows. So there actually are positive
impacts that you could have if you actually figured out what
exactly is going on here when the action potential
shows up to open up this calcium channel. So now we have the
big picture. We know how a motor neuron can
stimulate a contraction of a cell by allowing the
sarcoplasmic reticulum to allow calcium ions to travel
across this membrane in the cytoplasm of the cell. And I was doing a little bit of
reading before this video. These pumps are very
efficient. So once the signal goes away and
this door is closed right here, this this sarcoplasmic
reticulum can get back the ion concentration in about
30 milliseconds. So that's why we're so good at
stopping contractions, why I can punch and then pull back my
arm and then have it relax all within split-seconds
because we can stop the contraction in 30 milliseconds,
which is less than 1/30 of a second. So anyway, I'll see in the next
video, where we'll study the actual anatomy of
a muscle cell in a little bit more detail.