If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Facilitated diffusion

Facilitated diffusion is a type of passive transport that uses specialized proteins, such as channel proteins and carrier proteins, to help molecules move across a cell membrane. In this process, molecules can move down their concentration gradient without requiring any energy input from the cell.

Want to join the conversation?

  • male robot hal style avatar for user David
    If the ion are positively charged like the Na+ (sodium) ion, why and how did it managed to get itself attracted and move through the channel protein instead of attaching itself to negatively charged hydrophilic head of cellular membrane?
    (23 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Michael Tang
      Some Na+ ions will definitely get stuck by the hydrophilic heads, but the channel proteins ensure that more Na+ ions will get through than if they were not there. Remember that even though a few molecules are only being drawn in the pictures, there are thousands, millions, billions of actual molecules flowing through, so on average, the channel proteins help more ions get through the membrane.
      (23 votes)
  • aqualine ultimate style avatar for user Athwon Blackett
    I understand the basis of what he is explaining, but how would one define facilitated diffusion?
    (5 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 손요셉
    In the practice session for Passive Transport, one of the question asks which of the following is true about passive transport and there were two choices that seemed correct (I could only choose one). One was ions such as calcium and sodium could use channel proteins to cross the membrane and the other was carrier proteins and channel proteins transport molecules at different rates. I knew the latter was true, but I also thought the former was true as well since Sal seemed to say that ions could cross the membrane through facilitated diffusion. As it turns out, the part about ions crossing the membrane by means of facilitated diffusion was incorrect because they need to cross by active transport. So which is it? Can they or can they not cross by means of facilitated diffusion and was Sal incorrect?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user carlsagancosmos101
      Yes , i also think that question is wrong. There are channel proteins in the body for transport of those ions.
      Sodium : Voltage gated Channel Proteins in Neurons for propagation of nerve Impulse.
      Potassium : There are Leaky Channels inside nerve cells ...refer Nerve trnsmission videos of Khan Academy itself.
      Calcium : In smooth muscles of the Body...there are Voltage Gated Calcium Channels Present.
      (3 votes)
  • male robot hal style avatar for user vb
    can virus enter through transport proteins on cell membrane?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 959272
    Just to make sure that I'm understanding this correctly...facilitated diffusion can use both channel proteins and carrier proteins?
    There was a misconception section written for active transport that said that active transport works against the concentration gradient, so it uses carrier proteins(because ATP is needed in order to go from a low to a high concentration gradient)
    Does this also mean that carrier proteins can be used for transporting molecules from a high-to-low and low-to-high concentration gradient?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leafers ultimate style avatar for user Caleb H.
      Yes, facilitated diffusion can use both channel proteins and carrier proteins.

      And yes, some carrier proteins are used for active rather than passive transport. It just depends on the protein - for example, GLUT4 proteins are carrier proteins that let glucose molecules in from high to low concentration passively.

      On the other hand, Sodium-potassium ATPase is a carrier protein that uses ATP hydrolysis to pump sodium and potassium against their concentration gradients.

      So they can do both, just in different situations.
      (4 votes)
  • aqualine ultimate style avatar for user Wunda Abdulai
    is the movement of water through aquaporins facilitated diffusion?
    is the movement of ions through protein channels facilitated diffusion?
    im confused because i have received conflicting information
    (3 votes)
    Default Khan Academy avatar avatar for user
  • leaf red style avatar for user Julian Delgadillo Marin
    Is the nucleous commanding all this stuff, or is it just probabilistic ?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Sarthak
    At , Sal says that the phospholipid bilayer has channel proteins known as aquaporins. However, in previous videos, he said that water, while being polar, is small, meaning it can pass through the membrane slowly. Can you please explain why water would need aquaporins if it can pass through the membrane without any help from proteins?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Isabella Tepper
      Like Sal said, water is able to pass through the cell membrane, but it does so pretty slowly. This isn't a sufficient speed for the amount of water that is needed to pass in and out of the cell membrane, so aquaporins are needed to facilitate this process. With aquaporins, water can pass through the cell membranes at a much faster rate than it can on its own.
      (3 votes)
  • piceratops seed style avatar for user Peter George
    Can't carrier proteins also move molecules along their concentration gradient? If so wouldn't that require ATP making it a form of active transport?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • starky sapling style avatar for user punniebunnie
    what causes facilitated diffusion to stop?
    (2 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- In the first video on passive transport we talked about the most passive of passive transports and that is simple diffusion. And we talked about how small non-charged, non-polar molecules would actually have the easiest time. Things like carbon dioxide or molecular oxygen, would have the easiest time diffusing through the cellular membrane. They're small enough to kind of get through the little gaps here and then since they have no charge or polarity they're gonna be fairly indifferent as they pass through. And then we talked about in-between you have things like water molecules which are small enough to pass through the gaps but they have some polarity so they're not going to be able to get through super easily, but they will be able to seep through. And then we talked about things that would have a tough time. And that's charged particles because charged particles, and we have some ions right over here, a sodium ion, a potassium ion. Even though these are fairly small they're going to interact a lot with the phosphate heads right over here with this charge, which is gonna make it hard for them to actually penetrate through the membrane. What I wanna talk about in this video is still passive transport. And remember passive transport is about not using energy. It's about moving down the concentration gradient. But we're gonna talk about ways that passive transport can happen a little bit easier for some of these molecules over here. And that's because their transport, their passive transport, is going to be facilitated. So what we're going to talk about in this video. Let me just figure out a place where I can write it, is facilitated, faciliated diffusion. So let me write that down. "Facilitated, "Facilitated Diffusion" So last video was just straight up diffusion, now we're gonna talk about facilitating it. So what do you think, if you were trying to engineer something, that would make it easy for these types of molecules, either a water molecule or an ion, to move down its concentration gradient? What would you do? Well you might say, "Well if I didn't have "to mess with all of this, you know, "all the hydrophilic heads and then the hyrophobic tails "and then the hydrophilic heads here." Well that would make it pretty easy to move down your diffusion gradient. And that's exactly what has emerged in nature. Essentially just tunnels through the membrane. And so one form of facilitated diffusion can happen through what we call channel proteins. Let me write this in orange, for no good reason. "Channel, channel, channel proteins." "Channel proteins." And an example of a channel protein might be this one right over here. And maybe this one is specialized for being a channel for water and so we would call this, this particular one, we could call an aquaporin "Aqua, aquaporin". Which is just a channel protein for water. And so you see it has this hole on top. And let's say you had more water molecules outside the cell than you have inside the cell. And you wanted to move down its concentration gradient, or maybe you have a higher concentration of solute here, and so we're going to have osmosis occurring. So the water molecules they're more likely to come, they're more like to come from the outside to the inside than from the inside to the outside, and so you could have water molecules going there. They don't even really have to mess with the membrane, they're just gonna go through this aquaporin and then come out on the inside of the cell. And you have similar channel proteins for ions. So this might be one for ions. And so, let's say that this is a sodium, these are sodium ions right over here. They're charged, they would have trouble getting through. But this channel protein might be specific to them and allows them, it allows them, to go through. And as we'll see when you study things like neurons, we'll see that these channel proteins, especially for ions, are incredibly important for amplifying an electrical signal down, or a chemo-electrical signal, I guess I could say. And they can also be gated, they can also open and close depending on different conditions that are in different parts of the cell. So these channel proteins they could just be open. Or they could be open and closed, gated, based on different conditions. Which you can see that's actually key to what happens in nerve cells, that we'll see in future videos. Now another type of facilitated diffusion can occur through what we call carrier proteins, "carrier proteins". And I wanna be clear I'm gonna talk about carrier proteins but people are still studying exactly how they work. But the view is, okay let me just draw the membrane here. Let me draw, let me draw, a membrane. I'm gonna draw a carrier protein in the membrane. So this is a... This is a cross-section of my membrane. My phospholipid bilayer here, almost done. And then a carrier protein, and the way I'm gonna draw it isn't exactly how a carrier protein would actually look, but it will hopefully give you the right idea. So maybe it's like this, maybe it's like this. And if things wanna move down their concentration gradient. Let's say you have a higher concentration above. And I'm just gonna say some arbitrary particle has a higher concentration above than it does below. They can actually attach potentially, or kind of get into a compartment over here, and then that would trigger the carrier protein to change its shape so that, and let me see if I can draw its changed shape well. So it could change its shape. This is when it's taking stuff from above. And then when it sees that, "Hey I've got stuff here", it can change its shape to look something like this. So it could kinda flip around. Let me get the other tool. It could, whoops, really having trouble with my tools today. Alright, it could flip around like this. So before it was open to the top but now, it could flip around, and the stuff that it just collected from the top, could be dumped inside the cell. And once again this is passive transport because it's all about things moving down their concentration gradient. If there was no cellular membrane here these things would have moved in this direction. You would have had more things moving in this direction, in a given amount of time, than you would have had things going in the opposite direction. But the cellular membrane was getting in the way, but then this carrier membrane can facilitate that passive transport. It can facilitate the actual diffusion.