Main content

## Precalculus

### Course: Precalculus > Unit 7

Lesson 10: Multiplying matrices by matrices# Multiplying matrices

When we multiply a matrix by a scalar (i.e., a single number) we simply multiply all the matrix's terms by that scalar. We can also multiply a matrix by another matrix, but this process is more complicated. Even so, it is very beautiful and interesting. Learn how to do it with this article.

#### What you should be familiar with before taking this lesson

A

**matrix**is a rectangular arrangement of numbers into rows and columns. Each number in a matrix is referred to as a**matrix element**or**entry**.For example, matrix A has 2 rows and 3 columns. The element a, start subscript, start color #11accd, 2, end color #11accd, comma, start color #e07d10, 1, end color #e07d10, end subscript is the entry in the start color #11accd, 2, start text, n, d, space, r, o, w, end text, end color #11accd and the start color #e07d10, 1, start text, s, t, space, c, o, l, u, m, n, end text, end color #e07d10 of matrix A, or 5.

If this is new to you, we recommend that you check out our intro to matrices. You should also make sure you know how to multiply a matrix by a scalar.

#### What you will learn in this lesson

How to find the product of two matrices. For example, find

## Scalar multiplication and matrix multiplication

When we work with matrices, we refer to real numbers as

**scalars**.The term

**scalar multiplication**refers to the product of a real number and a matrix. In scalar multiplication, each entry in the matrix is multiplied by the given scalar.In contrast,

**matrix multiplication**refers to the product of two matrices. This is an entirely different operation. It's more complicated, but also more interesting! Let's see how it's done.Understanding how to find the

**dot product**of two ordered lists of numbers can help us tremendously in this quest, so let's learn about that first!## n-tuples and the dot product

We are familiar with ordered pairs, for example left parenthesis, 2, comma, 5, right parenthesis, and perhaps even ordered triples, for example left parenthesis, 3, comma, 1, comma, 8, right parenthesis.

An n-tuple is a generalization of this. It is an ordered list of n numbers.

We can find the

**dot product**of two n-tuples of equal length by summing the products of corresponding entries.For example, to find the dot product of two ordered pairs, we multiply the first coordinates and the second coordinates and add the results.

Ordered n-tuples are often indicated by a variable with an arrow on top. For example, we can let a, with, vector, on top, equals, left parenthesis, 3, comma, 1, comma, 8, right parenthesis and b, with, vector, on top, equals, left parenthesis, 4, comma, 2, comma, 3, right parenthesis. The expression a, with, vector, on top, dot, b, with, vector, on top indicates the dot product of these two ordered triples and can be found as follows:

Notice that the dot product of two n-tuples of equal length is always a single real number.

### Check your understanding

## Matrices and n-tuples

When multiplying matrices, it's useful to think of each matrix row and column as an n-tuple.

In this matrix, row 1 is denoted start color #11accd, r, start subscript, 1, end subscript, with, vector, on top, end color #11accd, equals, left parenthesis, 6, comma, 2, right parenthesis and row 2 is denoted start color #11accd, r, start subscript, 2, end subscript, with, vector, on top, end color #11accd, equals, left parenthesis, 4, comma, 3, right parenthesis.

Similarly, column 1 is denoted start color #e07d10, c, start subscript, 1, end subscript, with, vector, on top, end color #e07d10, equals, left parenthesis, 6, comma, 4, right parenthesis and column 2 is denoted start color #e07d10, c, start subscript, 2, end subscript, with, vector, on top, end color #e07d10, equals, left parenthesis, 2, comma, 3, right parenthesis.

### Check your understanding

## Matrix multiplication

We are now ready to look at an example of matrix multiplication.

Given $A=\left[\begin{array}{rr}{1} &7
\\ 2& 4
\end{array}\right]$ and $B=\left[\begin{array}{rr}{3} &3
\\ 5& 2
\end{array}\right]$, let's find matrix C, equals, A, B.

To help our understanding, let's label the rows in matrix A and the columns in matrix B. We can define the product matrix, matrix C, as shown below.

Notice that each entry in matrix C is the

*of a row in matrix A and a column in matrix B. Specifically, the entry c, start subscript, start color #11accd, i, end color #11accd, comma, start color #e07d10, j, end color #e07d10, end subscript is the dot product of start color #11accd, a, start subscript, i, end subscript, with, vector, on top, end color #11accd and start color #e07d10, b, start subscript, j, end subscript, with, vector, on top, end color #e07d10.***dot product**For example, start color #1fab54, c, start subscript, 1, comma, 2, end subscript, end color #1fab54 is the dot product of start color #11accd, a, start subscript, 1, end subscript, with, vector, on top, end color #11accd and start color #e07d10, b, start subscript, 2, end subscript, with, vector, on top, end color #e07d10.

We can complete the dot products to find the complete product matrix:

### Check your understanding

**4)**$C=\left[\begin{array}{rr}{2} &1 \\ 5& 2 \end{array}\right]$ and $D=\left[\begin{array}{rr}{1} &4 \\ 3& 6 \end{array}\right]$.

Let F, equals, C, dot, D.

**6)**$M=\left[\begin{array}{rrr}{2} &8 &3 \\ 5& 4&1 \end{array}\right]$ and $N=\left[\begin{array}{rr}{4} &1 \\ 6& 3\\2&4 \end{array}\right]$.

Let P, equals, M, dot, N.

## Why is matrix multiplication defined this way?

Up until now, you may have found operations with matrices fairly intuitive. For example when you add two matrices, you add the corresponding entries.

But things do not work as you'd expect them to work with multiplication. To multiply two matrices, we

**cannot**simply multiply the corresponding entries.If this troubles you, we recommend that you take a look at the following articles, where you will see matrix multiplication being put to use.

## Want to join the conversation?

- What Matrixes cannot be multlipied by eachother?(27 votes)
- A matrix can be multiplied by any other matrix that has the same number of rows as the first has columns. I.E. A matrix with
**2**columns can be multiplied by any matrix with**2**rows. (An easy way to determine this is to write out each matrix's rows x columns, and if the numbers on the inside are the same, they can be multiplied. E.G. 2 x**3**times**3**x 3. These matrices may be multiplied by each other to create a 2 x 3 matrix.)

So the answer to your question is, a matrix cannot be multiplied by a matrix with a different number of rows then the first has columns.(51 votes)

- Can we take the dot product of two n-tuples of unequal length? Or is that undefined like when adding two matrices with different dimensions?(19 votes)
- You are correct in your assumption, the n-tuples must be of equal length.(14 votes)

- I don't understand this at
*all*. Can someone give me a different explanation?(11 votes)- Make sure you understand matrices: http://www.mathsisfun.com/algebra/matrix-introduction.html

then try this: https://www.mathsisfun.com/algebra/matrix-multiplying.html(21 votes)

- This article/lesson didn't really illustrate the rules of multiplying matrices with different dimensions, and as a result I bombed the following practice. Did anyone else have similar results?

How do I report this to KhanAcademy? There doesn't seem to be any option anywhere for "please include more content" or "this didn't help me and here's why" on the site.(11 votes)- When you went to post your question... on the right side it says:
`Have something that's not a question about this content?`

Post a tip or thanks

Join our help discussions

Report a technical problem with the site

Request a feature

Report a mistake in the video

You could have clicked on the "request a feature" link.

And, the video following this page has an example of multiplying 2 matrices of different dimensions: https://www.khanacademy.org/math/precalculus/precalc-matrices/multiplying-matrices-by-matrices/v/multiplying-a-matrix-by-a-matrix(8 votes)

- The article as a whole seems to use the dot product and the cross product interchangeably. I was under the impression that this was not the case for matrices. Are they indeed interchangeable?(5 votes)
- Cross product is not used in the article, and they are indeed different operations that cannot be used interchangeably.(9 votes)

- Could you elaborate about dot product? I don't really understand what it is.

What is it and why do we use this?(5 votes) - is a square matrix containing a row or column of zeros invertible ?(3 votes)
- Great question! If you have a row of zeros, the matrix 'crushes' the dimension of a vector down (eg. a cube crushed into a plane). So information about where the point was along some axis is lost. Because of this, the matrix isn't invertible since there's no way to gain back the information of where it would be along the axis where it was crushed.(5 votes)

- how do we multiply two matrices, A and B, where
**A has the number of rows equal to the number of columns of B**(2 votes)- Let A be an mxn matrix and B be a pxm matrix. A*B will only be defined if n equals p. If n and p are unequal, then A*B will be undefined.(5 votes)

- if A and B are matrices does A * B = B * A?

also when i multiply matrices do they have to be the same dimensions?(3 votes)- To your second question, if you have a matrix A of dimension PxQ and B of dimension RxS, then A*B is defined only when Q=R. In that case, A*B has dimension PxS.

This relates to your first question: if we have A*B, B*A is not even necessarily defined. So in general, A*B ≠ B*A.(2 votes)

- The article says "the dot product of two n-tuples of equal length by summing the products of corresponding entries"

and "Ordered n-tuples are often indicated by a variable with an arrow on top"

My question:

1. Is the vector like v=(2,3) a two-tuple ? because both vectors and n-tuples can be represented the same way

2. In the past video about vector , i was told that vector can be only Scalling , so if vectors can be "dot-producted", what's the meaning behind this ?(3 votes)- 1. Yes, any n-dimensional vector can be represented as an n-tuple. So the vector (2, 3) is a 2-tuple.

2. In earlier videos, we were saying that in order for something to be called a vector, it must be closed under scaling (that is, if v is a vector, so is cv for any real c). We are now defining new operations on vectors, and that's fine. But in order to be a vector, we don't need to be able to define something like the dot product.(2 votes)