# Product, quotient, & chain rules

Contents

Covered basic differentiation? Great! Now let's take things to the next level. In this topic, you will learn general rules that tell us how to differentiate products of functions, quotients of functions, and composite functions. Anxious to find the derivative of eˣ⋅sin(x²)? You've come to the right place.

7 exercises available

The product rule says that the derivative of the product f(x)g(x) is f'(x)g(x)+f(x)g'(x). This helps us find the derivative of a function which is a product of two other, more basic, functions.

The chain rule says that the derivative of the composite function f(g(x)) is f'(g(x))⋅g'(x). This helps us find the derivative of a composite function. It may be slightly hard to grasp, but its importance cannot be overstated!

Go "behind the scenes" with Sal and learn how the chain rule is proved.

The quotient rule says that the derivative of the quotient f(x)/g(x) is [f'(x)g(x)-f(x)g'(x)]/g²(x). This helps us find the derivative of a function which is a quotient of two other, more basic, functions.

Review your understanding of the product, quotient, and chain rules with some challenge problems.