If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Evaluating quotient of fractional exponents

Sal simplifies the complicated expression 256^(4/7) / 2^(4/7)  until he finds that the expression is equal to 16.

Want to join the conversation?

  • male robot hal style avatar for user neeziv
    I am not sure why one cant subtract the exponents while we are dividing. Given:
    256^(4/7) / 2^(4/7) Why does the rule of subtracting exponents(4/7 - 4/7) in this situation fail? Thank you
    (18 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 黄 俊鹏
    What about the exponent is a irrational number?Like we describe 2^0.5=sqrt(2) , but how do we define 2^sqrt(2)?
    (8 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Aleena
    Doesn't simplifying the fraction (dividing 256 by 2 to reach 128) violate the PEMDAS rule whereby operation of exponent precedes that of division or multiplication?
    (6 votes)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      There is a property of exponents that tells us that having a fraction raised to an exponent is the same as having both the numerator and denominator individually raised to the exponent.
      For example: (1/2)^3 = 1^3/2^3
      The problem in the video is both the numerator and denominator with the same exponent. So, Sal uses this property exponents to bring the fraction back together, which allows him to then do the division.
      Hope this helps.
      (9 votes)
  • mr pants teal style avatar for user Adrian CantSayLastName
    So 3.14 = 3/4?
    I Dont Understand
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user julianjoker07
    I thought in the exponents rules, a^m / a^n would end up having the exponents minus each other out and in (256^4/7) / (2^4/7) would become 256^0 / 256^0 and therefore would equal 1/1 and then 1. How come it's not like this?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      All properties of exponents require that you have a common base. As you noted: a^m/a^n = a^(m-n), but the a's must be the same.

      256 does not equal 2. So, there is no common base which is why your approach doesn't work.

      Sal used the property of a^m/b^m = (a/b)^m. This let him divide 256/2, then apply the exponent to get to his answer of 16.

      Alternatively, you can convert to a common base.
      256 = 2^8
      (2^8)^(4/7) = 2^(8*4/7) = 2^(32/7)
      Then apply the property: a^m/a^n = a^(m-n)
      2^(32/7) / 2^(4/7) = 2^(32/7-4/7) = 2^(28/7) = 2^4 or 16

      Hope this helps.
      (8 votes)
  • boggle yellow style avatar for user Emma
    why do we need to know this when we could just use a calculator
    (6 votes)
    Default Khan Academy avatar avatar for user
  • female robot grace style avatar for user Emma
    At , what dos he mean by computationally intensive?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • duskpin sapling style avatar for user DigitalPanda213
      A computation is just a mathematical calculation, so to say something is computationally intensive meaning that its hard to calculate. For instance, 1+1 is very easy to compute, so easy in fact you probably did it in your head without even thinking. Something like 128^4, or 53619 x 79863 would be considered hard to compute (without a calculator of course (unless perhaps you're a genius))
      (7 votes)
  • blobby green style avatar for user Anas Mashhood
    Can't you subtract exponents when dividing? Thank You.
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user dleblanc9989
    (128^4)^(1/7) is actually fun, I love doing things like this.

    128^2 = 16384
    128^3 = 2097152
    128^4 = 268435456

    (268435456)^1/7 or 7rt(268435456) = 16

    To check this math, you can multiply 16 seven times and get the answer

    16^1=16
    16^2=256
    16^3=4096
    16^4=65536
    16^5=1048576
    16^6=16777216
    16^7=268435456

    I don't recommend doing it this way, however. It takes math to a new level of annoyance. I just did it to show you guys what he meant by computationally intensive.



    I need to go outside... touch grass... and play in the sun for the first time.

    Also apparently, the answer is wrong... I know it is 2, but things don't turn out like they should when higher numbers cause you to have brainfarts. :)
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Melanie Govender
    hi. so i made the bases the same, and then subtracted the exponents due to division, and i arrived at the same answer. is the method that i used valid?

    (2^8)^4/7 2^32/7
    ---------- = -------- = 2^28/7 = 2^4 = 16
    2^4/7 2^4/7
    (3 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] Let's see if we can figure out what 256 to the four-sevenths power, divided by two to the four-sevenths power is, and like always, pause the video and see if you can figure this out. All right, let's work through this together, and at first you might find this kind of daunting. Especially when you see something like two to the four-sevenths power or is that even, that's not going to be a whole number, how do I, how do I do this, especially without a calculator. And I should've said, do this without a calculator. But then the key is to see that we can use our exponent properties to simplify this a little bit so that we can do this on paper. And the main property that may jump out at you is if I have something, if I have, if I have x to the a power, over y to the a power, this is the same thing as x over y, to the a power. And in our situation right over here, 256 would be x, two would be y, and then a is four-sevenths, so we can rewrite this, this is going to be equal to this is equal to 256, over two, to the four-sevenths power, and so this is nice. We're already able to simplify this, because we know 256 divided by two, is 128. So this is 128 to the four-sevenths power. Now this might also seem a little bit difficult, how do I raise 128 to a fractional power? But we just have to remind ourselves, this is the same thing, this is the same thing as 128 to the one-seventh power. Then raised to the fourth power. We could also view it the other way around, we could say that this is also 128 to the fourth, to the fourth power, and then raise that to the one-seventh, but multiplying 128 four times, that's going to be very computationally intensive, and then you have to find the seventh root of that. That seems pretty difficult, so we don't want to go in that way, but if we can get the smaller number first, what is 128 to the one-seventh power? Then that might be easier to raise to the fourth power. Now when you look at this, and knowing that probably, the question writer in this case, I'm the person who presented it with you is, telling you that you're not going to use a calculator is, it's a pretty good clue that, all right, this is probably going to be a, this is probably going to be something that I can figure out on my own, and you might recognize 128 as a power of two, and maybe two to the seventh is 128, and we can verify that. So let's see, two to the first is two. Four, eight, 16, 32, 64, 128. Two times two is four, times two is eight, times two is 16, times two is 32, times 2 is 64, times two is 128. So, two to the seventh power is equal to 128, or another way of saying this exact same thing is that 128, 128 is equal to or 128 to the one-seventh power, is equal to two. Or you could even say that the seventh root, the seventh root of 128, is equal, is equal to two. So, we can simplify this. This is two, so our whole expression is now just two to the fourth power. Well, that's just two times two, times two, times two. So, that's two to the fourth power. Two to the fourth power, which is just going to be equal to 16. That's two, times two, times two, times two, right over there. And so we're done! This crazy, complicated-looking expression, it is simplified to 16.