If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Types of neurotransmitter receptors

Created by Matthew Barry Jensen.

Want to join the conversation?

  • leaf green style avatar for user Tua
    Are there other types of metabotropic receptors in the nervous system than the g-protein-coupled type?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Nahn
      Yep, but very few that we understand very well. Metabotropic is just a receptor that acts through a second messenger system (not through an ion channel). An example of a non-G-protein metabotropic receptor would be a tyrosine kinase receptor, where the receptor either phosphorylates itself to become activated, or phosphorylates proteins other than g proteins to activate them and transmit the signal.
      (16 votes)
  • piceratops seed style avatar for user ploybie_exol
    Does the target cells have to be only neurons? Can it be other types of cells ?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • female robot ada style avatar for user neha
      Target cells include neurons, muscle cells, and gland cells.
      The target may even be a blood vessel, so that the neuron can secret NT into the bloodstream!

      Matthew mentioned this in the first video of this section, Synapse Structure.
      (6 votes)
  • blobby green style avatar for user Sandy Peterson
    I don't understand the general 5 steps of the neurotransmitters relating to neurons synapse. Can you please explain it in simple steps. I have reviewed this over & over & I just don't understand it.
    (4 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Joanne
      I reviewed this video and did not see 5 steps. This video is giving a wide overview of how a neuron can be affected. I think it is more detailed than it needs to be and he concentrated more on vocabulary then on concepts. What I would say is first understand how an action potential, AP, is carried down an axon and the neuron releases neurotransmitter. Here in this video, there more details that complicate the story. A neuron can have 1000 other neurons telling it what to do. Some encourage or excite by allowing sodium into the cell. Some are inhibitory by allowing potassium out or Cl ions in. Whether or not the neuron sends an action potential depends on the sum of these occurrences. It has to be overall excited to trigger an action potential. In addition, further fine tuning can occur at the axon terminal. If you get that, you are doing well. For more background read Wikipedia or a college level textbook from open stax at Rice University web site.
      (8 votes)
  • blobby green style avatar for user Brittny D.
    What exactly does he mean by "graded potentials" when talking about ionotopic receptors? I understand action potential and resting potential, but what does graded mean?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Carmen
      Let's say you need a total of +5 stimulatory messages to trigger an action potential. If you receive 5 stimulatory signals, you'll reach that action potential threshold. But what if you get 5 stimulatory signals AND 2 inhibitory signals at the same time? The graded potential is essentially the sum of all of the inputs. So +5 stimulatory -2 inhibitory = a graded potential of +3, which in this case is not enough to trigger an action potential.
      (1 vote)
  • blobby green style avatar for user Merlene cover
    So lack of nutrients such as minerals and vitamins could affect the effectiveness of neurotransmitter which could cause muscle-spasms?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • orange juice squid orange style avatar for user LaFontaine
    Are metabotropic receptors responsible for epigenetic changes?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user jordan.ross97.2
    in what way does an increase in neurotransmitters (quantity) affect the amount of information passed from one cell to the next, specifically in relation to metabotropic transmitter receptors?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf blue style avatar for user eira
      No, there are not always an excess of neurotransmitters. Take Parkinson's disease for an enormously simplified example; the brain cells that are responsible for the production of the neurotransmitter dopamine slowly die. Dopamine is the messenger with which the brain instructs the muscles about movement. The using of muscles becomes increasingly harder when there is not enough dopamine to carry orders from the brain to the muscles.
      (2 votes)
  • spunky sam blue style avatar for user Amna
    what is depolarization?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • leafers seed style avatar for user PCMSIII
      Depolarization occurs when a cell moves away from its resting potential in the positive direction. This is commonly accomplished with Na+ entry into a cell, causing the cell to become more positive. if the cell becomes depolarized past a set threshold, an action potential is fired. This is how all the nervous system works, and the main function of neurotransmitters is to cause or inhibit action potential firing in the post-synaptic cell.
      (3 votes)
  • aqualine ultimate style avatar for user The Curious Intellectual
    Is a Ligand always a neurotransmitter? And what really is Ligand binding?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user lukaspana9
      In the case of impulses travelling from neuron to neuron the ligand binding to the postsynaptic membrane receptor will be a neurotransmitter; a ligand is generally however a molecule that binds to its complementary receptor, which is not only used in neurons but in many areas of the body (especially cell signalling as another major example). Ligand binding is when a molecule binds to a receptor that has a complementary shape to the ligand, meaning that it is specific for that receptor, and will lead to an excitatory or inhibitory response (in the case of neurons and transmission).
      (1 vote)
  • blobby green style avatar for user Tina Davis
    What are some synaptic mechanism to increase the post-synaptic response?
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

Voiceover: In this video I want to talk about the types of neurotransmitter receptors. Neurons are often referred to as excitatory or inhibitory, but more accurately it's the synapse that's excitatory or inhibitory, and even more specifically, it's the combination of the neurotransmitter that's released at the synapse and the receptor that it binds to on the post synaptic membrane. Because many neurotransmitters can bind to multiple types of receptors so that the neurotransmitter can sometimes be excitatory and it can sometimes be inhibitory to the target cell so that this axon terminal might be releasing this neurotransmitter here at the synapse and perhaps when it binds to this purple receptor, that causes an excitatory potenetial in the target cell, but if it binds to this orange receptor on the post synaptic membrane, that would cause inhibition of the target cell, would cause inhibitory potential. When the target cell is another neuron, excitatory or inhibitory synapses can be scattered around all over the surface of the neuron. Or there are many neurons where the dendrites are receiving predominately excitatory synapses so that there can be a large number of neurons synapsing on the dendrites and releasing neurotransmitters that will cause depolarizations in the dendrites. So let me just draw little purple pluses in here to represent that these are excitatory synapses. And then many neurons like this will have more inhibitory synapses on the soma. So I'll just draw some little orange minus signs here to represent that these could be inhibitory synapses on the soma. And then often neurons have synapses on their axon terminals so that other axon terminals are synapsing on the axon terminal of the target neuron and these will often be a mix of excitatory and inhibitory synapses. And there's a big variety in how the synapses are set up on neurons. And there would be a mix of some excitatory and inhibitory synapses at all these locations. But for neurons that are set up like this, kind of a general way of thinking about how information would flow to the neuron is that they can receive lots of excitatory input through the dendrites, causing depolarizations to spread down the dendrites into the soma. But then if these neurons are inhibiting the soma, that can block those depolarizations from reaching the trigger zone to trigger an action potential. And then when action potentials are conducted from the trigger zone down the axon to the axon terminal, the excitatory and inhibitory synapses on the axon terminal can increase or decrease the amount of neurotransmitter that is released when an action potential reaches the axon terminal. So that there can be fine tuning of the output of the neuron at multiple levels all the way from the dendrites through the soma and to the actual individual axon terminals, can have their output turned up or turned down in response to the information flowing in from all these synapses. So that one way you can categorize synapses is if they're predominately excitatory or predominately inhibitory. But there are some other big differences in neurotransmitter receptors and how they pass information from neurotransmitters in the chemical synapse to the target cell. So let me just draw a big axon terminal here that's releasing neurotransmitter into the synaptic cleft. And this will be the post synaptic membrane of the target cell. And I'm gonna draw the two big types of neurotransmitter receptors here. Let me draw this one in grey with its little receptor to bind to the neurotransmitter. And I'll draw this other one in yellow over here with its little pocket to bind to its neurotransmitter. So this first type of neurotransmitter receptor is called ionotropic. And ionotropic neurotransmitter receptors are ligand gated ion channels. So they have ion right in the name. And when their ligand binds to their receptor, which in this case is their neurotransmitter, they open and allow certain ions to pass. And when the neurotransmitter leaves the receptor, then they close and they don't let ions pass through anymore. The ionotropic neurotransmitter receptors cause graded potentials when they're activated, which have a rapid effect on the potential of the near by membrane that is brief and local. The target cell will usually be excited if the activated ionotropic neurotransmitter receptor allows sodium or calcium ions to pass because they will usually flow into the neuron, bringing their positive charges in and causing depolarization. Or the ionotropic neurotransmitter receptor will usually cause inhibition of the target cell if it allows chloride or potassium ions to pass. Chloride ions will usually flow into the neuron, bringing negative charges in, making it more negative inside and potassium ions will usually flow out of the neuron, carrying their positive charges outside and also making it more negative inside. Now the other big class of neurotransmitter receptors are called metabotropic. And these are not ion channels. Instead, when their neurotransmitter binds to the receptor, they activate second messengers inside the neuron. And there are a number of different types of second messenger systems that can be activated by metabotopic neurotransmitter receptors. And these second messengers can do a lot of different things. They can go and effect the behavior of ion channels, causing them to be more or less active. Or they can change the activity of proteins inside the neuron. And some can even effect the activity of genes and change the pattern of gene expression inside of neurons. When these metabotropic neurotransmtter receptors are activated, the response of the target cell occurs more slowly than it does with activation of ionotropic neurotransmitter receptors, but the effects may be larger and they may be more widespread because there can be amplification through these second messenger systems. The effects of activation of these second messenger systems by metabotropic receptors may involve just brief excitation or inhibition of the target cell, or it may cause longer lasting changes to how the target cell behaves, either when it's at rest or when it's responding to input.