If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Introduction to proteins and amino acids

Proteins, large biomolecules or macromolecules, play a vital role in almost every biological process. They are made up of chains of amino acids, which are their building blocks. These chains, known as polypeptides, can form complex shapes, contributing to the diverse functions of proteins. Proteins can provide structure, facilitate muscle contraction, catalyze reactions as enzymes, and participate in immune response and signaling. Created by Sal Khan.

Want to join the conversation?

  • sneak peak green style avatar for user Sumit
    For anyone who needs a summary:
    Proteins are macromolecules found in organisms made up of one or sometimes more polypeptide chains. Amino acids are made up of the amine group and are the monomers that form polymer amino acid chains or polypeptide.

    General Amino Acid Structure:
    R represent a possible one of the 21 side chains, which are present on the right

    Your welcome :)
    (38 votes)
    Default Khan Academy avatar avatar for user
  • cacteye blue style avatar for user Layla
    Are proteins and polypeptides both considered polymers? Our teacher taught us that polymers and polypeptides are interchangeable and mean the same thing.
    (16 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user ᗩᑎGEᒪ
    At , can you use another letter besides R?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • hopper cool style avatar for user SamaK
    There are so many terms here... Monomer, polymer, polypeptide, amino acid, etc. Any good way to remember which is which?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leafers tree style avatar for user zoe
      Focus on the beginnings of the words. Monomers and polymers are easy to remember because mono means one and poly means many. Furthermore, polypeptides are just many peptide bonds.
      (8 votes)
  • mr pink red style avatar for user Arno van der Merwe
    According to Google a Micrometer is one millionth of a meter,not one thousandth,who is right?
    (0 votes)
    Default Khan Academy avatar avatar for user
  • leafers sapling style avatar for user CheeseBoy Naturalist/Optimistic Guy
    BTW the scientific name for titin is so long it takes 3 hours to pronounce, probably because the protein is so large and complex.
    (4 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user Brook
    Can proteins be non-biological?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • winston default style avatar for user sussy baka
    what’s the difference between polymer and polypeptide
    (1 vote)
    Default Khan Academy avatar avatar for user
    • sneak peak blue style avatar for user William Shiuk
      Both polymers and polypeptides are types of large molecules, but they differ in their composition and function.

      Polymers:
      A polymer is a large molecule composed of repeating subunits called monomers. These monomers can be the same or different and are linked together through chemical bonds. Polymers can be found in various natural and synthetic materials, such as plastics, proteins, nucleic acids, and carbohydrates.

      Polypeptides:
      A polypeptide is a specific type of polymer composed of amino acids. Amino acids are the building blocks of proteins. When amino acids are linked together through peptide bonds, they form a polypeptide chain. Proteins are essential biomolecules that serve various functions in living organisms, such as enzymes, structural components, signaling molecules, and more.

      In summary, a polypeptide is a type of polymer specifically made up of amino acids and is a precursor to proteins. Proteins are biologically active molecules with diverse roles, while polymers encompass a broader category of large molecules made up of repeating units, which can include polypeptides along with other types of monomers.

      You know, these days you can just ask AI.
      (6 votes)
  • starky tree style avatar for user Austin
    I heard that proteins and fats satisfy hunger more efficiently than carbohydrates and sugars. First, is that true? Second, why is it true? Is it because protein molecules are generally larger, or because proteins are better at signaling your cells that they have received energy from the food you have been eating? Or is it something completely different?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user TheRealBigBrainKid
    So are proteins macromolecules that are made up of different elements which create different types of amino acids??
    (3 votes)
    Default Khan Academy avatar avatar for user
    • winston baby style avatar for user Mason Smith
      Yes, you’re correct Proteins are indeed macromolecules that are made up of different elements. These elements - primarily carbon, hydrogen, oxygen, and nitrogen - combine in various ways to form 20 different types of amino acids.

      Each amino acid has the same fundamental structure, which consists of a central carbon atom bonded to an amino group (–NH2), a carboxyl group (–COOH), and a unique side chain. The side chain, also known as the R group, is what differentiates one amino acid from another.

      These amino acids are the building blocks of proteins. They link together in specific sequences, forming long chains called polypeptides. The sequence of amino acids in a polypeptide chain is determined by the sequence of nucleotides in the gene that codes for that protein.

      The polypeptide chains then fold into specific three-dimensional structures, forming functional proteins. The structure of a protein determines its function. Proteins can serve a wide array of roles in a cell or organism, such as catalyzing biochemical reactions, providing structural support, and transporting materials.

      So, proteins are indeed macromolecules made up of different elements that form various types of amino acids. These amino acids then link together to form proteins, which play crucial roles in the body.
      (1 vote)

Video transcript

- [Instructor] What we're going to do in this video is talk about proteins, and some of you all might already be familiar with them, at least in some context. If you look at any type of packaging on food you'll oftentimes see a label that has protein listed and a certain number of grams per serving, and some of you who might be athletically inclined might associate it with things that help you build muscle. And none of that is incorrect, but as we'll see in this video and in many future videos, proteins are involved in almost every, single biological process and every, single living organism. And if we ask ourselves what are they, well, they're biomolecules. They're molecules found in biological systems. And they're large biomolecules. We could call them macro molecules, molecules, which is just referring to they're made up of many, many, many, many, many atoms. These right here are pictures, two different views, of the chaperonin protein, and this is, the chaperonin protein is roughly 800,000 times the mass of a hydrogen atom. So it's going to contain tens of thousands of atoms which would very much make it a macro molecule. Now one thing to be careful of, even though these are very, very large on a molecular scale, even the largest protein we know of, titan, is about one micrometer in length, and that's much larger than this chaperonin here. And a micrometer is one thousandth of a millimeter. So even the largest proteins are microscopic. Now another way to think about proteins is what they are made up of. So some proteins are made up of a single chain of something called amino acids, and things like chaperonin are made up of multiple chains of amino acids. So in a little bit I'll show you some particular amino acids but for now just think of them as the building blocks of proteins. So let's say that's an amino acid and then it will bond to another amino acid, and it's not just one type of amino acid and they can form these really, really, really long chains. And so let me be very clear, this is an amino acid, and it's called that because it contains an amine group, which you don't have to worry about for now, and they are the monomers that form the polymers of what's known as polypeptide chains. So these are monomers. You connect them together, and you could keep going, you could have hundreds or even thousands of these, and so this whole thing right over here you can consider to be a polymer, and a chain of amino acids, the polymer of amino acids is known as a polypeptide. Polypeptide. And sometimes a polypeptide chain is a protein, but sometimes a protein can be made up of multiple polypeptide chains put together. And what happens is after these amino acids connect or bond to each other, they bend and they form the shape of these proteins. So you can imagine the chaperonin protein right over here, it has these chains of amino acids that bend, that have a conformation that form the shape, and that's really what gives proteins their power. And as I mentioned, proteins are involved in almost every, single biological function. They play a structural, structural role. They play a mechanical role. When your muscles contract, you have actin and myosin proteins interacting with each other so that your muscle contracts. They can act as enzymes, which we will talk about in a lot more depth in future videos. Enzymes help catalyze reactions. They help biological, biochemical reactions happen in biological systems. They can be involved with the immune system. They could be involved with signaling. They can send signals from one part of the body to another, or they can be receptors on cells that receive signals. So proteins are incredibly, incredibly important. Now with that out of the way, let's dig a little bit deeper into the building blocks of proteins, the monomers that build up the polymers that are polypeptides, which could be proteins or which could be used to build up proteins. So what we see on the left here is a typical structure of an amino acid. Notice you see some oxygens, you see some hydrogen, some carbons, and nitrogen. And then bonded to this carbon right over here you see this R. And you say what element is that. Well, this is not an element. This is referring, this is kind of a placeholder for a side chain, which differentiates the common amino acids. And you see some of the common amino acids in this diagram right over here. And you can see what the R would be. For this arginine right over here, that R group would be this part, and you don't have to understand the biochemistry of it in too much detail, but you can see that they all have this top part in common, but then they all have a different R group right over here. And it's different sequences of these amino acids that give us the diversity of all of the proteins that we have in biological systems of all of the various shapes. And it really, really, really, really is amazing. I mean, just going back to this picture of chaperonin which is involved with helping other proteins get their shape, it chaperones the protein folding process, so to speak. Just think about the complexity. This looks like a complex machine, but it forms naturally in biological systems. And as we explore more and more biology, we keep seeing these fascinating proteins that look like these incredible systems that really boggle the imagination.