If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Population and sample standard deviation review

Population and sample standard deviation

Standard deviation measures the spread of a data distribution. It measures the typical distance between each data point and the mean.
The formula we use for standard deviation depends on whether the data is being considered a population of its own, or the data is a sample representing a larger population.
  • If the data is being considered a population on its own, we divide by the number of data points, N.
  • If the data is a sample from a larger population, we divide by one fewer than the number of data points in the sample, n, minus, 1.
Population standard deviation:
sigma, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared, divided by, N, end fraction, end square root
Sample standard deviation:
s, start subscript, x, end subscript, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared, divided by, n, minus, 1, end fraction, end square root
The steps in each formula are all the same except for one—we divide by one less than the number of data points when dealing with sample data.
We'll go through each formula step by step in the examples below.
Why we divide by n, minus, 1 is a pretty complex concept. If you want to learn more about the intuition behind this topic, check out this video.

Population standard deviation

Here's the formula again for population standard deviation:
sigma, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared, divided by, N, end fraction, end square root
Here's how to calculate population standard deviation:
Step 1: Calculate the mean of the data—this is mu in the formula.
Step 2: Subtract the mean from each data point. These differences are called deviations. Data points below the mean will have negative deviations, and data points above the mean will have positive deviations.
Step 3: Square each deviation to make it positive.
Step 4: Add the squared deviations together.
Step 5: Divide the sum by the number of data points in the population. The result is called the variance.
Step 6: Take the square root of the variance to get the standard deviation.

Example: Population standard deviation

Four friends were comparing their scores on a recent essay.
Calculate the standard deviation of their scores:
6, 2, 3, 1
Step 1: Find the mean.
mu, equals, start fraction, 6, plus, 2, plus, 3, plus, 1, divided by, 4, end fraction, equals, start fraction, 12, divided by, 4, end fraction, equals, 3
The mean is 3 points.
Step 2: Subtract the mean from each score.
Score: x, start subscript, i, end subscriptDeviation: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis
66, minus, 3, equals, 3
22, minus, 3, equals, minus, 1
33, minus, 3, equals, 0
11, minus, 3, equals, minus, 2
Step 3: Square each deviation.
Score: x, start subscript, i, end subscriptDeviation: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesisSquared deviation: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis, squared
66, minus, 3, equals, 3left parenthesis, 3, right parenthesis, squared, equals, 9
22, minus, 3, equals, minus, 1left parenthesis, minus, 1, right parenthesis, squared, equals, 1
33, minus, 3, equals, 0left parenthesis, 0, right parenthesis, squared, equals, 0
11, minus, 3, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
Step 4: Add the squared deviations.
9, plus, 1, plus, 0, plus, 4, equals, 14
Step 5: Divide the sum by the number of scores.
start fraction, 14, divided by, 4, end fraction, equals, 3, point, 5
Step 6: Take the square root of the result from Step 5.
square root of, 3, point, 5, end square root, approximately equals, 1, point, 87
The standard deviation is approximately 1, point, 87.
Want to learn more about population standard deviation? Check out this video.
Want to practice some problems like this? Check out this exercise on standard deviation of a population.

Sample standard deviation

Here's the formula again for sample standard deviation:
s, start subscript, x, end subscript, equals, square root of, start fraction, sum, left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared, divided by, n, minus, 1, end fraction, end square root
Here's how to calculate sample standard deviation:
Step 1: Calculate the mean of the data—this is x, with, \bar, on top in the formula.
Step 2: Subtract the mean from each data point. These differences are called deviations. Data points below the mean will have negative deviations, and data points above the mean will have positive deviations.
Step 3: Square each deviation to make it positive.
Step 4: Add the squared deviations together.
Step 5: Divide the sum by one less than the number of data points in the sample. The result is called the variance.
Step 6: Take the square root of the variance to get the standard deviation.

Example: Sample standard deviation

A sample of 4 students was taken to see how many pencils they were carrying.
Calculate the sample standard deviation of their responses:
2, 2, 5, 7
Step 1: Find the mean.
x, with, \bar, on top, equals, start fraction, 2, plus, 2, plus, 5, plus, 7, divided by, 4, end fraction, equals, start fraction, 16, divided by, 4, end fraction, equals, 4
The sample mean is 4 pencils.
Step 2: Subtract the mean from each score.
Pencils: x, start subscript, i, end subscriptDeviation: left parenthesis, x, start subscript, i, end subscript, minus, mu, right parenthesis
22, minus, 4, equals, minus, 2
22, minus, 4, equals, minus, 2
55, minus, 4, equals, 1
77, minus, 4, equals, 3
Step 3: Square each deviation.
Pencils: x, start subscript, i, end subscriptDeviation: left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesisSquared deviation: left parenthesis, x, start subscript, i, end subscript, minus, x, with, \bar, on top, right parenthesis, squared
22, minus, 4, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
22, minus, 4, equals, minus, 2left parenthesis, minus, 2, right parenthesis, squared, equals, 4
55, minus, 4, equals, 1left parenthesis, 1, right parenthesis, squared, equals, 1
77, minus, 4, equals, 3left parenthesis, 3, right parenthesis, squared, equals, 9
Step 4: Add the squared deviations.
4, plus, 4, plus, 1, plus, 9, equals, 18
Step 5: Divide the sum by one less than the number of data points.
start fraction, 18, divided by, 4, minus, 1, end fraction, equals, start fraction, 18, divided by, 3, end fraction, equals, 6
Step 6: Take the square root of the result from Step 5.
square root of, 6, end square root, approximately equals, 2, point, 45
The sample standard deviation is approximately 2, point, 45.
Want to learn more about sample standard deviation? Check out this video.
Want to practice some problems like this? Check out this exercise on sample and population standard deviation.

Want to join the conversation?

  • blobby green style avatar for user neha.yargal
    how to identify that the problem is sample problem or population
    problem?
    (28 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Jonathon
      Great question! It depends on why you are calculating the standard deviation. In the case of sampling, you are randomly selecting a set of data points for the purpose of estimating the true values for mean, standard deviation, etc. In the case of a population problem you are collecting data points from 100% of the subjects you wish to study.
      (44 votes)
  • blobby green style avatar for user tamjrab
    Why standard deviation is a better measure of the diversity in age than the mean?
    (8 votes)
    Default Khan Academy avatar avatar for user
    • starky ultimate style avatar for user Andrea Rizzi
      I'll try to give you a quick example that I hope will clarify this. If you picked three people with ages 49, 50, 51, and then other three people with ages 15, 50, 85, you can understand easily that the ages are more "diverse" in the second case. In the first case people are all around 50, while in the second you have a young, a middle-aged, and an old person.

      However, in both cases the average is 50! The average cannot pick on this diversity, and in fact it doesn't measure diversity at all, only central tendency. On the other hand, the standard deviation turns out to be 0.8, and 28.6 respectively, and correctly assigns greater "diversity" to the second case. Hope this helps!
      (60 votes)
  • aqualine seed style avatar for user Alfonso Parrado
    Why do we have to substract 1 from the total number of indiduals when we're dealing with a sample instead of a population? I know how to calculate the sample standard deviation, but I want to know the underlying reason why the formula has that tiny variation
    (14 votes)
    Default Khan Academy avatar avatar for user
  • hopper jumping style avatar for user Pedro Ivan Pimenta Fagundes
    If the sample has about 70% or 80% of the population, should I still use the "n-1" rules?? Or i just divided by n?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user ragetactic27
    this is why I hate both love and hate stats. how can you effectively tell whether you need to use a sample or the whole population? (this seems to the be the most asked question)
    (3 votes)
    Default Khan Academy avatar avatar for user
  • aqualine sapling style avatar for user Izzah Nabilah
    Can i know what the difference between the (∑(x-μ)^2)/N formula and [∑x^2-((∑x)^2)/N]N this formula. How can i know which one im suppose to use ?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • duskpin seed style avatar for user 021490
    How do I find the standard deviation if I am only given the sample size and the sample mean?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • old spice man blue style avatar for user Bryanna  McGlinchey
    For the population standard deviation equation, instead of doing mu for the mean, I learned the bar x for the mean is that the same thing basically? If so, then why use mu for population and bar x for sample?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 23altfeldelana
    If a problem is giving you all the grades in both classes from the same test, when you compare those, would you use the standard deviation for population or sample?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • duskpin tree style avatar for user Kailie Krombos
      If you are assessing ALL of the grades, you will use the population formula to calculate the standard deviation.

      A way to remember the difference is that a sample is only a group, a part of a whole. The population is referring to the entire set. So when you are receiving data from the ENTIRE population, you can be confident in using the population formula. If you are only given data from a PART of the group, you know to use the sample formula. I hope this helps!
      (2 votes)
  • blobby green style avatar for user timfadoumbouya247
    The population mean of GDP/cap (in thousands) is $18.79 with a standard deviation
    of $12.83. Use the normal distribution to estimate the number of countries with
    greater than $18790. Compare that estimate with the actual number. Comment on the
    accuracy of your estimate.
    (2 votes)
    Default Khan Academy avatar avatar for user