If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Sampling distribution of a sample mean example

Here's the type of problem you might see on the AP Statistics exam where you have to use the sampling distribution of a sample mean.

Example: Means in quality control

An auto-maker does quality control tests on the paint thickness at different points on its car parts since there is some variability in the painting process. A certain part has a target thickness of 2 mm. The distribution of thicknesses on this part is skewed to the right with a mean of 2 mm and a standard deviation of 0.5 mm.
A quality control check on this part involves taking a random sample of 100 points and calculating the mean thickness of those points.
Assuming the stated mean and standard deviation of the thicknesses are correct, what is the probability that the mean thickness in the sample of 100 points is within 0.1 mm of the target value?
Let's solve this problem by breaking it down into smaller parts.

Part 1: Establish normality

What is the shape of the sampling distribution of the sample mean thickness?
Choose 1 answer:

Part 2: Find the mean and standard deviation of the sampling distribution

The sampling distribution of a sample mean x¯ has:
μx¯=μσx¯=σn
Note: For this standard deviation formula to be accurate, our sample size needs to be 10% or less of the population so we can assume independence.
Question A (Part 2)
What is the mean of the sampling distribution of x¯?
μx¯=
  • Your answer should be
  • an integer, like 6
  • a simplified proper fraction, like 3/5
  • a simplified improper fraction, like 7/4
  • a mixed number, like 1 3/4
  • an exact decimal, like 0.75
  • a multiple of pi, like 12 pi or 2/3 pi
mm

Question B (Part 2)
What is the standard deviation of the sampling distribution of x¯?
σx¯=
  • Your answer should be
  • an integer, like 6
  • a simplified proper fraction, like 3/5
  • a simplified improper fraction, like 7/4
  • a mixed number, like 1 3/4
  • an exact decimal, like 0.75
  • a multiple of pi, like 12 pi or 2/3 pi
mm

Part 3: Use normal calculations to find the probability in question

Assuming the stated mean and standard deviation of the thicknesses are correct, what is the approximate probability that the mean thickness in the sample of 100 points is within 0.1 mm of the target value?
Choose 1 answer:

Want to join the conversation?

  • blobby green style avatar for user Sergey Li
    I saw the Explain for question 1 saying n=100 ≥ 30, the central limit theorem applies. I don't understand where the 30 comes from?
    (13 votes)
    Default Khan Academy avatar avatar for user
    • piceratops seedling style avatar for user David Bryant
      It's another one of those "rules of thumb". The experience of statisticians with many different populations and many different sample sizes over a large number of years led them to adopt this particular rule.

      The CLT tells us that as the sample size n approaches infinity, the distribution of the sample means approaches a normal distribution. Experience shows us that most of the time 30 is close enough to infinity for us to employ the normal approximation and get good results.
      (36 votes)
  • leaf yellow style avatar for user Vikrant Jain
    How come for last question answers I 95 %. Pls explain in detail
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user sanaksoomro
    I don't get one thing, in all the video examples Sal has used sample sizes of less that 30 and proved its normal, then why are we suddenly supposed to only use CLT is the sample size exceeds 30? And what are we supposed to do for those sampling distributions which have sample size less than 30?? Are we supposed to assume that they would have the same distribution as the parent population?
    (7 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Saivishnu Tulugu
      The thing you are confusing is that even if sample sizes are less than 30 they still CAN be normal. However, if the sample size is greater than 30 we automatically assume it will approach a normal distrn by the CLT. Therefore, if the sample size is less than 30 you have to prove whether it is normal or not but if it is over 30 no proof is neccesary.
      (8 votes)
  • blobby green style avatar for user Jakeila Walton
    I don't understand how they got 95% as the probability.
    (1 vote)
    Default Khan Academy avatar avatar for user
  • primosaur ultimate style avatar for user Naresh K
    What is the difference between standard deviation of sampling distribution, and unbiased standard deviation of a sample? The formula for both are different. And which one is a better/closer estimate of the true standard deviation of the entire population?
    (1 vote)
    Default Khan Academy avatar avatar for user