Main content

### Course: Statistics and probability > Unit 6

Lesson 4: Types of studies (experimental vs. observational)- Types of statistical studies
- Worked example identifying experiment
- Worked example identifying observational study
- Worked example identifying sample study
- Observational studies and experiments
- Types of statistical studies
- Appropriate statistical study example

© 2024 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Types of statistical studies

Types of statistical studies.

## Want to join the conversation?

- At8:26Sal puts a restriction on the control group of the experiment. Doesn't that take them out of the control group? It seems like in this example we now have two experiments, but no control group. From my understanding of control groups, they either just keep on doing what they're doing, or the changes they make have a known effect, e.g., current best medical treatment (control) versus experimental treatment.(8 votes)
- Here's what I got from this video, and I hope this helps: what is done with the control group and the experimental group will vary on what you're testing for.

With this experiment example, Sal is trying to see if the amount of computer time has an impact on blood pressure. You can think of the reason for the experiment is that, in the observational study, we saw a positive correlation between computer usage and blood pressure. So the question for the experiment is: "does high computer usage time cause high blood pressure (is there causality)?"

Since we want to see if there is causality between high computer usage and high blood pressure, we need then one group, the control, to have a low computer usage, and the experimental group, what we're testing for, to have higher computer time usage. We do this test this way because we need to control the amount of computer time each group has, or we won't have an experiment.

If both groups, the control and experimental groups, were not given different restrictions on computer time, the test would only be showing what the blood pressure was for each group afterwards, and we wouldn't be able to tell if computer time made any difference.(17 votes)

- So what EXACTLY is a confounding variable?(5 votes)
- A variable that's not accounted for that may cause variation in the results. You might a conduct a study and conclude that bank thieves are more likely to eat ice cream after the theft. While your results may be statistically robust, you have overlooked the fact that it's because most thefts happen in the summer when the weather is warmer. In this case, "season" or "temperature"are the confounding variables.(11 votes)

- I'm confused about the difference between the sample and observational study examples. Suppose in the sample study, they collect computer time and blood pressure. It sounds like if they just present the average of both then it remains a sample study, but as soon as they plot them against each other it becomes an observational study. Similarly, in the observational study, they presumably created some criteria to determine which 1000 people were included in the study. Is the difference really based on what is done with the data rather than how the study is conducted?(7 votes)
- The type of study you use really depends on the data that you have, and what you're trying to find out.

So, your first question should be is, what am I trying to find out? Am I trying to find out something about a population? Am I trying to compare two variables (like computer use and blood pressure)? Am I trying to see if something causes something else?

Then, the second question to ask is: what kind of data do I need to collect so that I can answer what I am trying to find out?

I hope also that you continue with the next few videos, where Sal works through examples of each different type of study. That will help I believe in telling the difference between them.(3 votes)

- Ethical experiment: Trying to determine if computer time causes high blood pressure

Unethical experiment: Trying to determine if high blood pressure causes computer time(3 votes) - Basically, you can't ever really know you've eliminated the confounding variables for lots of different scenarios.

How would you know? Looks like it depends on the scenario being studied.(1 vote)- Eliminating confounding variables entirely can be challenging, and it depends on the specific scenario being studied. Researchers use various techniques such as random assignment in experiments to minimize the influence of confounding variables. However, in observational studies, confounding variables may still exist, making it difficult to establish causal relationships definitively.(1 vote)

- What would be the term for a statistical study in which only one variable (for instance, it can be heights of male giraffes in a certain forest) is studied to find population parameters, and the entire population is studied, instead of just a sample?(0 votes)
- Can someone please make a summary of this whole video?(0 votes)
- Sal explains three main types of statistical studies: sample study, observational study, and experiment. In a sample study, researchers aim to estimate a population parameter by sampling a subset of the population. An observational study explores the relationship between two variables within a population, without establishing causality. Confounding variables may influence the observed correlation. Experiments, on the other hand, aim to establish causality by manipulating an independent variable and observing its effect on a dependent variable. Random assignment helps minimize the influence of confounding variables. Sal emphasizes the importance of distinguishing between correlation and causation, and the need for careful experimental design to draw meaningful conclusions.(1 vote)

- I understand about what the type of studies are but something is not working in Sal's experiment.

Sal said that he will see if computer time will affect blood pressure. He said experiments are to see if there is a cause, but isn't there a confounding variable there? The people on 2 hours on their computers are less active so couldn't the difference between the 2 groups' blood pressure be because of less active time?(0 votes)- In Sal's experiment, where computer time is manipulated to observe its effect on blood pressure, there could indeed be confounding variables such as level of physical activity. Participants spending more time on computers might be less physically active, which could contribute to higher blood pressure. Controlling for such variables through random assignment helps mitigate this issue, but it's essential to acknowledge the potential influence of confounding variables.(1 vote)

- There are four types of statistical studies: observational studies, surveys, experiments, and meta analytical studies.(0 votes)
- At8:47he assumes that the two group had the same average blood pressure, so what if we did not get a similar average blood pressure to those who get into the experiment? Would that be a sampling error? How would fix this issue?

Kind regard,(0 votes)- Without this assumption we might end up with biased groups ex: one group had higher average blood pressure than the other group, which could be because of some confounding variable.(0 votes)

## Video transcript

- [Instructor] Talk about the main types of statistical studies. So you can have a sample study and we've already talked
about this in several videos but we'll go over it again in this one. You can have an observational
study, observational study. Or you can have an experiment, experiment. So let's go through each of these and always pause this
video and see if you can think about what these words likely mean, or you might already know. Well, sample study, we have looked at. This is really where
you're trying to estimate the value of a parameter for a population. So what's an example of that? So let's say we take the
population of people in a city, and so that could be hundreds
of thousands of people, and the parameter that you care about is how much time on average do
they spend on a computer. So the parameter would be
for the entire population. If it was possible, you
would go talk to every, maybe there's a million
people in the city. You would talk to all
million of those people and ask them how much time
they spend on a computer and you would get the average and then that would be the parameter. So population parameter,
population parameter, would be average time
on a computer per day, average daily time, time on a computer. Now you'd determine that it's impractical to go talk to everyone, so
you're not going to be able to figure out the exact
population parameter, average daily time on a computer, so instead, you do a sample study. You randomly sample, and
there's a lot of thought in thinking about whether
your sample is truly random, so you randomly sample and there's also different techniques of randomly sampling. So you randomly sample
people from your population and then you take the average
daily time on a computer for your sample, and that
is going to be an estimate for the population parameter. So that's your classic sample study. Now in an observational study, you're not trying to estimate a parameter. You're trying to understand
how two parameters in a population might
move together or not. So let's say that you
have a population now, so let's say you have a population of, let's say you have a
population of 1,000 people. 1,000 people, and you're
curious about whether average daily time on a computer, how it relates to people's blood pressure. So average computer time, oh, I shouldn't be writing this way. Instead of average computer time, it should just be computer time. Computer time versus blood
pressure, blood pressure. So what you do is you apply
a survey to all 1,000 people and you ask them how much
time you spend on a computer and what is your blood pressure? Or maybe you measure it in some way, and then you plot it
all, you look at the data and you see if those two
variables move together. So what does that mean? Well, let me draw. If this axis is, let's
say this is computer time. Computer time, and this
axis is blood pressure. Blood pressure. So let's say that there's one person who doesn't spend a lot
of time on a computer and they have a relatively
low blood pressure. There's another person
who spends a lot of time, has high blood pressure. There could be someone who
doesn't spend much time on a computer but has a
reasonably high blood pressure, but you keep doing this and
you get all these data points for those 1,000 people, and
I'm not going to sit here and draw 1,000 points, but
you see something like this, and so you see, hey, look, it looks like there's definitely some outliers but it looks like these two
variables move together. It looks like, in general,
the more computer time, the higher the blood pressure, or the higher the blood
pressure, the more computer time. And so you can make a conclusion here about these two variables correlating, that they're positively correlated. There is a positive, a
reasonable conclusion if you did the study
appropriately would be that more computer time correlates with higher blood pressure or that higher blood pressure correlates with more computer time. Now, when you do these
observational studies or when you interpret these
observational studies, when you read someone
else's, it's very important not to say oh, well, this shows me that computer time causes blood pressure, because this is not showing causality, and you also can't say,
maybe you might say, somehow blood pressure causes more people to spend time in front of a computer. That seems even a little bit sillier, but they're actually the same 'cause all you're saying is
that there's a correlation. These two variables move together. You can't make a
conclusion about causality, that computer time causes blood pressure or that high blood pressure
causes more computer time. Why can't you make that? Well, there could be what's
called a confounding variable, sometimes called a lurking variable, where let's say that, so
this is computer time. Computer time, and this is blood pressure. Looks like building, so
blood, blood pressure. And it looks like these
two things move together. We saw that right over here in our data, but there could be a root variable that drives both of these,
a confounding variable, and that could just be the amount of physical activity someone has. So there could just be a
lack of physical activity driving both, lack of activity. People who are less active spend more time in front of a computer, and people who are less active
have higher blood pressure, and if you were to control for this, if you were to take a bunch of people who had a similar lack of activity or had a similar level of activity, you might see that computer time does not correlate with blood pressure, that these are just both
driven by the same thing and what you're really
seeing here is like, okay, people who aren't active
drives both of these variables. So once again, when you do
this observational study and if you do it well,
you can draw correlations and that might give you decent
hypotheses for causality, but this does not show causality because you could have
these confounding variables. Now, experiments, and experiments are the basis of the scientific method. Experiments are all about
trying to establish causality, and so what you would do is if you wanted to do an
experiment, you would take, and you probably wouldn't be able to do it with 1,000 people. Experiments in some ways are the hardest to do of all of these. Maybe you take 100 people, 100 people, and to avoid having this
confounding variable introduce error into your experiment, you randomly assign these
hundred people to two groups. So random assign, it's very important that they're randomly assigned. And that's nice, you might not know all of the confounding variables there, but it makes it likely
that each group will have a same amount of people
with lack of activity or the activity levels on
average in each of the groups, when they're randomly assigned,
it gives you a better chance that one group doesn't have
a significantly different activity level than the other. And then what you do is you have a control group and you
have a treatment group. Once again, you've randomly assigned them. So a control and then treatment. And what you might say is, okay, for some amount of time, all
of you in the control group can only spend max of 30
minutes in front of a computer, or maybe if you really
wanted to do it, you'd say you have to spend exactly
30 minutes on a computer and that's maybe a little unrealistic, and then the treatment
group, you have to say, you have to spend exactly two
hours in front of a computer, and I'm making up these numbers at random, and it would be nice to see, okay, what as everyone's blood
pressure before the experiment? And you'd say, okay, well,
the averages are similar going into the experiment, and then you go some amount of time and you measure blood pressure, and if you see that, wow, this group definitely has a higher blood pressure, this group has a higher blood pressure, so the blood pressure is higher here, and once again, some of this might have just happened randomly, it
might've been the people you happened to put in
there, et cetera, et cetera, but depending if this was
a large enough experiment and you conducted it well,
this says, hey, look, I'm feeling like there
is a causality here, that by making these
people spend more time in front of a computer, that that actually raised
their blood pressure. So once again, sample study, you're trying to estimate
a population parameter. Observation study, you are
seeing if there is a correlation between two things and
you have to be careful not to say, hey, one is causing the other 'cause you could have
confounding variables. Experiment, you're trying to establish or show causality and you do
that by taking your group, randomly assigning to
a control or treatment. That should evenly or
hopefully evenly distribute. Not always, there's
some chance it doesn't, but distribute the confounding variables and then on each group,
you change how much of one of these variables they get and you see if it drives
the other variable. So anyway, in the next two videos, we'll do some examples of identifying these types of sample studies and thinking about what
we can conclude from them, or these types of statistical studies and see what we can conclude from them.