If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

# Interpreting general multiplication rule

We can express the probability that two events both occur symbolically using the general multiplication rule, and we can interpret probability statements that are expressed symbolically. Created by Sal Khan.

## Want to join the conversation?

• Wait, but didn't Sal say that whatever the contestants landed on wouldn't be taken out, and so each contestant has an equally likely possibility of landing on kale? Or is the scenario just different for the seond question? • I need some help with the 2nd question:
Since the 2 events are independent, is the 'given' necessary in the right part of the equal sign?

In other words, P(K2 | K1^C) is the same as P(K2), right?

Thank you! Like the bag of marbles example, the marble was removed from selection space once picked and the remaining total quantity was x-1.

In this example the option of kale wasn't removed on the first selection K_1^C = "first contestant does not land on kale".
The equation was:

P(K_1^C and K_2) = P(K_1^C) x P(K_2 | K_1^C)

It wasn't mentioned in the question that the resources were limited to one serving. Even if there was only one portion of each product, the option is still there on the spinning wheel. As far as I understand, that means that the probability of landing on any option remains 1/6 for each given turn.

I was under the impression (K_2 | K_1^2) the "|" was specifically used in the context of a dependant outcome.
If this is a dependant probability outcome, shouldn't it have been better explained in the question that an item selected will be removed and landing on it again would require another spin of the board.

unless of course, I have completely misunderstood the "|" given symbol, and is not exclusive to a dependant formulae. 