If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

### Course: Grade 7 (Virginia)>Unit 4

Lesson 3: Identifying proportional relationships

# Intro to proportional relationships

To know if a relationship is proportional, you should look at the ratios between the two variables. If the ratio is always the same, the relationship is proportional. If the ratio changes, the relationship is not proportional.

## Want to join the conversation?

• What if an odd and even number were in a proportional.
• If an odd and an even were in a proportional like 2:3 it would just be like 4:6
• What is 23%of 80
• (1.) Turn 23% into the decimal .23.
(2.) Multiply .23 and 80.
(3.) .23 X 80 = 18.4
• This is great.
I've been doing this for about an hour and it's growing on me. I'd like to give a big thanks to the guy who makes these.
• I totally agree
• Can you make this more easier like more understandable?
• Proportions are the same ratios written in different forms. A proportional relationship is states that they are the same. For example, 1/2 and 6/12 have a proportional relationship, which means they are the same.

I hope this helps!!
• Can I add a fraction
• Yes as long as they have the same denominator
• What is a rate?
(1 vote)
• A rate is essentially a constant. This constant cannot and must not change. Like Jada posed the example, I will take it one step further: A car is going at 25 miles per five hours, find the unit rate; the unit rate is actually just someone compared to one. So for every one of that object, there are x number of the other
• What does constant of proportionality mean and why does it matter?
• It is the same thing as slope of a line IF the line goes through the origin (0,0). y=kx is the formula or k = y/x. Note that the general slope formula, m = (y2-y1)/(x2-x1) can be used with (0,0) to get m = (y2-0)/(x2-0) or m = k = y2/x2. It is always the same no matter which point on the line you choose, thus constant.
• why do we do this very boring