If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

The golden ratio

An introduction to one of the most amazing ideas/numbers in mathematics. Created by Sal Khan.

Want to join the conversation?

  • primosaur ultimate style avatar for user Mark Waterhouse
    I have done a very basic Fibonacci Spiral using the skills I learned in the CS videos. Is the Fibonacci Spiral the same as the Golden Ratio?
    (253 votes)
    Default Khan Academy avatar avatar for user
  • leaf orange style avatar for user Patrick
    On , how does "phi=1+1/phi" be squared into ''phi(squared)=phi + 1"?
    (58 votes)
    Default Khan Academy avatar avatar for user
  • female robot grace style avatar for user Anaam Ahmed
    What is a phi?
    (74 votes)
    Default Khan Academy avatar avatar for user
  • starky tree style avatar for user abby
    Why does golden ratio keeps showing up in nature?
    (8 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user DeWain Molter
      It turns out that the golden ratio is not only an irrational number... it is the most irrational number. And there are places in the natural world were extreme irrationality is the most efficient solution to a problem, so by natural selection living systems tend toward that value where it works best.

      Consider a plant that has grown one leaf. If it grows a second leaf in the shadow of the first then that leaf is useless... an evolutionary disadvantage.

      If the second leaf is opposite the first then that is good, but the third will be in shadow and useless... same problem.

      As this species evolves, the plants whose leaves are most often useful have an advantage and breed more. It turns out that if a plant grows one leaf, then the next phi (the golden ratio) rotations from the first, then the third phi rotations from the second, and the fourth phi rotations from the third, and so on, that process will result in the longest possible time before the newest leaf is in the shadow of any existing leaf. So plants that tend toward this value have an advantage against plants that don't... so the survivors tend toward that value over time.

      What we see now is the result of eons of advantaged plants surviving over disadvantaged plants... and passing their advantages on to their offspring.
      (53 votes)
  • leaf green style avatar for user tk12
    At , Sal says that, "we are assuming [Lines a and b] are positive distances..." Does this mean that there can be negative distances? And if so, how can I represent them in real-life incidents?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Just Keith
      Think of it this way:
      You leave your home for a long journey, realize you left something important, turn around, go back home, and then continue with your trip. Question: how far have you traveled?

      Version 1: If you are only concerned with how many kilometers appear on the car's odometer, then you would treat portion of the trip where you drove back home as a positive distance.

      Version 2: If you are concerned about how far from home you are, then you would treat the portion of your trip where you drove back home as a negative distance because you were getting closer to your home.
      (20 votes)
  • marcimus pink style avatar for user changsinms
    Can the golden ratio be transferred into a fraction?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • leaf red style avatar for user Amber Harrington
    At , how did "phi minus one" turn into a positive "one over phi" wouldn't that be negative "one over phi"?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • mr pants teal style avatar for user Tim
      No, if you check out from about , you see that Sal finds (really early on) that Φ = 1 + 1/Φ, so 1/Φ = Φ-1.
      1] Φ = a/b = (a+b)/a             By definition
      2] Φ = (a+b)/a = a/a + b/a Separate out the numerator
      3] Φ = a/a + b/a = 1 + b/a Simplify a/a
      4] Φ = a/b, so 1/Φ = b/a Going back to (1)
      5] Φ = 1 + 1/Φ Substituting (4) into (3)
      6] 1/Φ = Φ - 1 Subtract 1 from both sides and swap sides
      (8 votes)
  • aqualine ultimate style avatar for user Selena Liu
    So... Phi is irrational, right?
    But what I'm confused about is that in the beginning, he says that phi=a/b. So that makes it rational! And what's the difference between a ratio and a fraction? :/
    (2 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Bollen
      Yes, Phi is irrational. You must remember that the definition of a rational number is a number that can be written as the ratio of two integers. Sal make's no statement at the beginning, as to what 'a' or 'b' are in phi=a/b. Later when he solves for phi we discover that a=1+√5 an irrational number. So the ratio a/b is not rational since 'a' is not rational.

      A ratio is a comparison between two numbers, while a fraction is just a single number. Practically they are indistinguishable most of the time.
      (10 votes)
  • hopper cool style avatar for user Pranav Charvu
    Are the Fibonacci Numbers related to the Golden Ratio?? How??
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Just Keith
      Yes, there is a connection. The ratio of one Fibonacci number to the previous in the series gets closer and closer to the Golden Ratio as you get to higher and higher Fibonacci numbers. For example, the 50th Fibonacci number is 20365011074. The 51st is 32951280099. The ratio of the 51st to the 50th is
      1.6180339887498948482035085192412
      The Golden ratio is:
      1.618033988749894848204586834365638....
      (6 votes)
  • blobby green style avatar for user friedlandnachman
    i dont get how phi, which is an irrational number, is several times referred to as a/b?
    (6 votes)
    Default Khan Academy avatar avatar for user

Video transcript

What I want to explore in this video is, given some length of string or a line or some line segment right here, b, can I set up an a, so that the ratio of a to b is equal to the ratio of the sum of these two to the longer side? So it's equal to the ratio of a plus b to a. So I want to sit and think about this a little bit. I want to see is can I construct some a that's on this ratio, this perfect ratio that I'm somehow referring to right here, so that the ratio of the longer side to the shorter side is equal to the ratio of the whole thing to the longer side. And let's just assume that we can find a ratio like that. And we'll call it phi. We'll use the Greek letter phi for that ratio over there. So let's see what we can learn about this special ratio phi. Well if phi is equal to a over b, which is equal to a plus b over a, we know that a plus b over a is the same thing as a over a plus b over a. a over a is just 1. And b over a is just the inverse of this statement right over here. So b over a-- this thing right here over here is phi-- so b over a is going to be 1 over phi. This is going to be 1 over phi. So this is interesting. We've now set up a number, which we're going to call this special ratio, phi is equal to 1 plus 1 over phi. Well just that is kind of a neat statement right over there. First of all, you could, if you subtract 1 from both sides of this, you get phi minus 1 is equal to its inverse. That seems to be a pretty neat property of any number that if I just subtract 1 from it, I get its multiplicative inverse. And so that, already that seems kind of intriguing. But then even this statement over here is kind of interesting because we've defined phi in terms of 1 plus 1 over phi. So we can actually think of it this way. We could say that phi is equal to 1 plus 1 over phi. But instead of writing phi, we're saying, wait, phi is just 1 plus 1 over-- instead of saying phi-- I could say, well, that's just 1 plus 1 over and I could just write phi again or I could just keep on going. I could just keep on going like this forever. I could say that's 1 over 1 plus 1 over and just keep on going on and on and on, forever. And this is a recursive definition of a function, or a recursive definition of a variable, where it's defined in terms of itself. But even this seems like a pretty neat property. But we want to get a little bit further into it. We actually eventually want to figure out what phi is. What is the value of phi, this weird number, this weird ratio that we're beginning to explore? So let's see if we can turn it into a quadratic equation that we can solve using fairly traditional methods. And the easiest way to do that is to multiply both sides of this equation by phi. And then you get phi squared-- let me write a little bit different-- phi squared is equal to phi plus 1. phi squared is equal to phi plus 1. And then, actually, I'm going to take a little bit of a side here. But even this is interesting, because then if we take the square root of both sides of this, you get-- let me scroll down a little bit-- you get phi is equal to the square root of-- and I'll just switch the order here-- the square root of 1 plus phi. So once again, we can set up another recursive definition. phi is equal to the square root of 1 plus phi. And I could write phi there, but hey, phi is equal to the square root of 1 plus and I could write phi there, but hey, phi is just equal to the square root of 1 plus, the square root of 1 plus. And we could just keep going on and on like this forever. So even this is neat. The same number that can be expressed this way, the same number where if I just subtract 1 from it, you get its inverse. It can also be expressed in these kind of recursive square roots underneath each other. So this is already starting to get very, very, very intriguing, but let's get back to business. Let's actually solve for this magic number, this magic ratio that we started thinking about. And really from a very simple idea, that the ratio of the longer side to the shorter side is equal to the ratio of the sum of the two to the longer side. So let's just solve this as a traditional quadratic. Let's get everything on the left-hand side. So we're going to subtract phi plus 1 from both sides. And we get phi squared minus phi minus 1 is equal to 0. And we can solve for phi now using the quadratic formula, which we've proven in other videos. You can prove using completing the square. But the quadratic formula you say, negative b. Negative b is the coefficient on this term right here. So let me just write it down, a is equal to 1, that's the coefficient on this term. b is equal to negative 1, that's the coefficient on this term. c is equal to negative 1, that's the coefficient, or it's really the constant term right over there. So the solutions to this, phi-- and we're actually only going to care about the positive solution because we're thinking about a positive-- when we go to our original problem here, we're assuming that these are both positive distances, so we care about a positive value right over here. We get phi is equal to-- do it in orange-- negative b. Well negative negative 1 is 1 plus or minus the square root of b squared. b squared is going to be 1 minus 4ac. a is 1, c is negative 1. So negative 4 times negative 1 is positive 4. So 1 plus 4, all of that over 2a. So a is 1, so all of that over 2. So phi is equal to 1. And once again, we only care about the positive solution here. This is going to be the square root of 5. If you have 1 minus the square root of 5, you're going to get a negative in the numerator. So we only care about the positive solution. 1 plus the square root of 5 over 2. So this seems like a pretty interesting number. Let's actually take a calculator out and see if we can get the first few places of this magic number phi. So let me get my calculator out. Let's just actually evaluate it. And you might recognize that square root of 5 is an irrational number. And so this whole thing is going to be an irrational number, but I'll prove that in another video, which means it never repeats. It goes on and on and on forever. But let's actually evaluate it. So it's 1 plus the square root of 5 divided by 2. So it says 1.6180339. So let me put that aside. Let me write it down. And this is where it starts to get really interesting and mysterious. So this number right over here is 1.618033988 and it just keeps on going on and on and on, keeps on never terminating, never repeating. So that by itself, it's this cool number. It's this ratio that has all of these neat properties, which are pretty crazy anyway that you express it. But what's really neat is if we revisit this thing right over here. Because what is 1 over phi going to be? So 1 over phi, which we sometimes denote with a capital phi. We already know 1 over phi is just phi minus 1. So we actually can do this in our heads. 1 over this is just going to be 0.618033988. I don't know. There's just something wacky about that, that the inverse of the number is really just the decimals left over after you get rid of the 1. That, by itself, is kind of a crazy idea. But it gets even crazier because this number is showing up everywhere. And as you might imagine from the title of this video, this phi right over here, this is called the golden ratio. This is the golden ratio and it shows up everywhere. It shows up in art. It shows up in music. It shows up in nature. And just to get an idea of where it shows up in nature, it shows up in very pure ideas. So if I were to just draw a perfect star, if I were to just draw a regular star like this. Let me just draw it like this. I'll draw it right over here. So this is just a regular star. All the lengths are equal. So I want to draw it a little bit better than that. So if I just draw a star like this right over here or sometimes this would be called a pentagram, some amazing things start to happen here. The ratio of this pink side to this blue length right over here, that's the golden ratio. The ratio of this magenta to this pink is the golden ratio, as it should, by definition. Now the ratio of the magenta to this orange is also the golden ratio. It just keeps on showing up in a ton of different ways when you look at a pentagram like this. If you look at something like a pentagon, a regular pentagon where all the angles are the same and all the sides are the same, a regular pentagon. If you take any of the diagonals of a regular pentagon, so right over here, if you take this diagonal right over here, the ratio of this green side to--and when I'm talking about the diagonals, ones that actually aren't one of the edges-- the ratio of any of the diagonals to any of the sides is once again, this golden ratio. So it keeps showing up on and on and on. And we can do interesting things with the golden ratio. Let's say that we had a rectangle, where the ratio of the width to the height is the golden ratio. So let's try that out. So let's say that this is its height. This is its width. And that the ratio-- So let's call this a. Let's call this b. And the ratio of a to b is equal to phi. That 1.61 so on and so forth. Let me scroll down a little bit. So that is going to be equal to phi. So that's something interesting to do. Maybe that's a nice looking rectangle of some sort. But let me put out a square here. So let me separate this into a b by b square. So this is a b by b square right over here. And then-- actually let me do it a little bit, let me draw it a little bit differently, this rectangle actually isn't exactly the way I would want to draw it-- so the ratio might look a little bit like this. So the ratio of the width to the length, or the width to the height, is going to be the golden ratio. So a over b is going to be that golden ratio. And let me separate out a little b by b square over here. So this has width b as well. And so this distance right over here is going to be a minus b. So now it is a b by a minus b square. Actually, I should say, we have a b by b square, right over here. This is b by b. And then we're left with a b by a minus b rectangle. Now wouldn't it be cool if this was also the golden ratio? And so let's try it out. Let's find the ratio of b to a minus b. So the ratio of b to a minus b. Well, that's going to be equal to 1 over the ratio of a minus b to b. I just took the reciprocal of this right over here. And this is just going to be equal to 1 over a over b. Let me write this, a over b minus 1. I just rewrote this right there. And that's just going to be equal to 1 over phi. The ratio of a to b, we said, by definition was phi minus 1. But what is phi minus 1? Well phi minus 1 is 1 over phi. It's this cool number. So it's equal to 1 over 1 over 1 over phi, which is once again, just equal to phi. So once again, the ratio of this smaller rectangle, of its height to its width, is once again this golden ratio, this number that keeps showing up. And then we could do the same thing again. We could separate this into an a minus b by a minus b square. Just like that. And then we'll have another golden rectangle, sometimes it's called, right over there. And then we could separate that into a square and another golden rectangle. Then we could separate that into a square and then another golden rectangle. Then another golden rectangle. Actually let me do it like this. This would be better. So let me separate. Let me do the square up here. So this is an a minus b by a minus b square and then we have another golden rectangle right over here. I could put a square right in there. Then we'll have another golden rectangle. Then we could put another square right over there, you have another golden rectangle. I think you see where this is going. Another square, another golden rectangle, which by itself starts to create a cool design that we can keep kind of circling in and in and in. And then, if we actually draw an arc here, something kind of cool happens. If we have an arc that traces these things out, we have something, a pattern that you might have seen many times before. And that pattern does not look too different than what you might see in something like a nautilus shell. And it shows up all over the place in nature. And that makes sense because just the way cells construct themselves. It kind of makes sense to be the same at different scales and the ratio from one scale to the next is maybe the same as the constituent ratios. This right here, and it shows up all over a lot of Leonardo DaVinci's paintings. He never explicitly stated it, but there's a lot of interesting ratios in them. But Salvador Dali, this painting right here, The Sacrament of the Last Supper, he explicitly used the golden ratio. So the actual ratio of the width to the height is the golden ratio, so this is a golden rectangle. And also there's all sorts of ratios and I'll invite you to explore it. The ratio of the different parts of the tables to where it sits in the painting. The golden ratio shows up a ton in this painting. And then he does have the pentagons over here. And we know that the ratio of the diagonal of the pentagon to the sides of the pentagon are also the golden ratio. And so he just thought it was a really cool thing. There's all sorts of neat things. That if you find where these two guys are bowing down are, if you draw that line right over here, this is the golden ratio. The ratio of this length right over here to that length over there. Once again, the golden ratio. It just keeps showing up in this painting. So it's a really, really, really cool thing and I really encourage you to explore this further because it's kind of exciting.