If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Specifying planes in three dimensions

In a three-dimensional space, a plane can be defined by three points it contains, as long as those points are not on the same line. Learn more about it in this video. Created by Sal Khan.

Want to join the conversation?

  • hopper cool style avatar for user Pranav Charvu
    What does collinear mean?
    (162 votes)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user jmascaro
      Hi Pranav,
      Collinear points are points that lie on the same line. If you only have two points, they will always be collinear because it is possible to draw a line between any two points. If you have three or more points, then, only if you can draw a single line between all of your points would they be considered collinear.
      Hope that helps!
      (315 votes)
  • blobby green style avatar for user alybrown13
    I though a plane was two dimensional, if I am wrong can you please explain?
    (58 votes)
    Default Khan Academy avatar avatar for user
  • piceratops tree style avatar for user Victor Takayama
    I don't understand what names a plane and why you need 3 points
    (15 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user DeWain Molter
      What is the smallest number of legs a stool can have and still be a free standing stool?

      If it has one leg it will fall over... same with two.
      If it has three legs it will stand, but only if those three legs are not on the same line... the ends of those three (non-collinear) feet define a plane.

      If the stool has four legs (non-collinear) it will stand, but if one of the feet is out of alignment it will wobble... it wobbles between two sets of three legs each... each defines a different plane.

      If I remember correctly you can identify a plane with a single capital letter, or any three non-collinear points in that plane... so if plane M contains points a, b and c it could also be called plane abc
      (166 votes)
  • spunky sam blue style avatar for user Giovanni
    What do collinear and coplanar mean?
    (19 votes)
    Default Khan Academy avatar avatar for user
    • leafers seedling style avatar for user Fieso Duck
      Collinear means "lying on the same line". Two or more points are collinear, if there is one line, that connects all of them (e.g. the points A, B, C, D are collinear if there is a line all of them are on). This means, that if you look at just two points, they are automatically collinear, as you could draw a line that connects them.

      Coplanar means "lying on the same plane". Points are coplanar, if they are all on the same plane, which is a two- dimensional surface. Any three points are coplanar (i.e there is some plane all three of them lie on), but with more than three points, there is the possibility that they are not coplanar.
      (48 votes)
  • piceratops ultimate style avatar for user VanossGaming
    At he says collinear what does that mean?
    (9 votes)
    Default Khan Academy avatar avatar for user
    • hopper cool style avatar for user Christi
      Let's break the word collinear down:

      co- : prefix meaning to share. For example, a coworker is someone who shares your work place.
      linear: related to a line.

      If we put this together, collinear would mean something that shares a line. Or, points that lie on the same line.
      (40 votes)
  • duskpin seedling style avatar for user GraceWashney
    I'm slightly confused on the difference between the 1st, 2nd, and 3rd dimensions. i understand that they each identify how an object occupies space and how it can move in said space (ie; 1st can't move at all, 2nd can only move back and forth or up and down, 3rd can move forwards, backwards, up down, back and forth) but i don't get how i would use this or how it would work in higher powers such as the 4th or 5th and how we have come to understand we live in a universe of dimensions.
    (4 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user jude4A
      Be careful with what you said. A object in 1-dimensional space can move in exactly one direction. So really it's proper to say:

      0D: I can't move anywhere.
      1D: I can move in one direction.
      2D: I can move in any combination of two directions.
      3D: I can move in any combination of three directions.

      For higher dimensions, we can't visually see it, but we can certainly understand the concept. For instance, an example of a 4D space would be the world we live in and the dimension of time. We can't see time, but we know that it is independent of the other three dimensions. Hope this helps. Good luck.
      (8 votes)
  • piceratops ultimate style avatar for user Michael.gianghia
    why don't they show us what "coplanar" points in this video. If anyone saw it please tell ,and please explain it to me
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Far_Lost
      I did not see "coplanar" within this video, but coplanar refers to points that lie on the same axis or plane as they keep mentioning. For example, if points A, B and C lie on the X axis, then they are coplanar. If, for example, line GF were represented diagonally, with an interception at point (0,0), and points DEF lie on line GF, then they would all lie on the same axis, making them coplanar.
      (5 votes)
  • orange juice squid orange style avatar for user jcalvien
    I am still confused about what a plane is. Is it any shape?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • hopper cool style avatar for user 15tkostolansky
    If I have two lines with the exact same coordinates, are they parallel or intersecting?
    I am asking that if it looks like there is only one line on a plane, but there are actually two lines and are "lined" :) up on top of each other, is it parallel or intersecting?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • duskpin seedling style avatar for user newness adejori
    can we specify the plane by saying ADJ? cause in all the examples, D was left out
    (3 votes)
    Default Khan Academy avatar avatar for user

Video transcript

We've already been exposed to points and lines. Now let's think about planes. And you can view planes as really a flat surface that exists in three dimensions, that goes off in every direction. So for example, if I have a flat surface like this, and it's not curved, and it just keeps going on and on and on in every direction. Now the question is, how do you specify a plane? Well, you might say, well, let's see. Let's think about it a little bit. Could I specify a plane with a one point, right over here? Let's call that point, A. Would that, alone, be able to specify a plane? Well, there's an infinite number of planes that could go through that point. I could have a plane that goes like this, where that point, A, sits on that plane. I could have a plane like that. Or, I could have a plane like this. I could have a plane like this where point A sits on it, as well. So I could have a plane like that. And I could just keep rotating around A. So one point by itself does not seem to be sufficient to define a plane. Well, what about two points? Let's say I had a point, B, right over here. Well, notice the way I drew this, point A and B, they would define a line. For example, they would define this line right over here. So they would define, they could define, this line right over here. But both of these points and in fact, this entire line, exists on both of these planes that I just drew. And I could keep rotating these planes. I could have a plane that looks like this. I could have a plane that looks like this, that both of these points actually sit on. I'm essentially just rotating around this line that is defined by both of these points. So two points does not seem to be sufficient. Let's try three. So there's no way that I could put-- Well, let's be careful here. So I could put a third point right over here, point C. And C sits on that line, and C sits on all of these planes. So it doesn't seem like just a random third point is sufficient to define, to pick out any one of these planes. But what if we make the constraint that the three points are not all on the same line. Obviously, two points will always define a line. But what if the three points are not collinear. So instead of picking C as a point, what if we pick-- Is there any way to pick a point, D, that is not on this line, that is on more than one of these planes? We'll, no. If I say, well, let's see, the point D-- Let's say point D is right over here. So it sits on this plane right over here, one of the first ones that I drew. So point D sits on that plane. Between point D, A, and B, there's only one plane that all three of those points sit on. So a plane is defined by three non-colinear points. So D, A, and B, you see, do not sit on the same line. A and B can sit on the same line. D and A can sit on the same line. D and B can sit on the same line. But A, B, and D does not sit on-- They are non-colinear. So for example, right over here in this diagram, we have a plane. This plane is labeled, S. But another way that we can specify plane S is we could say, plane-- And we just have to find three non-collinear points on that plane. So we could call this plane AJB. We could call it plane JBW. We could call it plane-- and I could keep going-- plane WJA. But I could not specify this plane, uniquely, by saying plane ABW. And the reason why I can't do this is because ABW are all on the same line. And this line sits on an infinite number of planes. I could keep rotating around the line, just as we did over here. It does not specify only one plane.