Main content

## 3rd grade

### Unit 6: Lesson 3

Equivalent fractions- Equivalent fractions with visuals
- Equivalent fraction models
- Equivalent fraction models
- Equivalent fraction visually
- Creating equivalent fractions
- Equivalent fractions on the number line
- Equivalent fractions
- Equivalent fractions and comparing fractions: FAQ

© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Equivalent fractions and comparing fractions: FAQ

Frequently asked questions about equivalent fractions and comparing fractions.

**What are equivalent fractions?**

Equivalent fractions are fractions that look different but represent the same amount. For example, start fraction, 1, divided by, 2, end fraction, start fraction, 2, divided by, 4, end fraction, and start fraction, 3, divided by, 6, end fraction are all equivalent fractions.

**How can we find equivalent fractions?**

We can use fraction models or number lines to find equivalent fractions.

For example, start color #543b78, start fraction, 6, divided by, 8, end fraction, end color #543b78 is at the same location on the number line as start color #0c7f99, start fraction, 3, divided by, 4, end fraction, end color #0c7f99.

start color #0c7f99, 3, end color #0c7f99 pieces of start color #0c7f99, start fraction, 1, divided by, 4, end fraction, end color #0c7f99 has the same area as start color #543b78, 6, end color #543b78 pieces of start color #543b78, start fraction, 1, divided by, 8, end fraction, end color #543b78 .

**How can we compare fractions with the same numerator?**

When comparing fractions with the same numerator, the fraction with the smaller denominator will be larger. For example, if we compare start fraction, 1, divided by, 2, end fraction and start fraction, 1, divided by, 4, end fraction, we can see that start fraction, 1, divided by, 2, end fraction is larger because the denominator is smaller (so the single "part" is larger).

**How can we compare fractions with the same denominator?**

When comparing fractions with the same denominator, the fraction with the larger numerator will be larger. For example, if we compare start fraction, 2, divided by, 4, end fraction and start fraction, 3, divided by, 4, end fraction, we can see that start fraction, 3, divided by, 4, end fraction is larger because the numerator is larger (so there are more "parts" in the fraction).

**Where do we use comparing fractions and equivalent fractions in the real world?**

There are many potential real-world applications for comparing and working with equivalent fractions. For example, in cooking, we might need to use equivalent fractions in order to follow a recipe accurately if we don't have the right measuring cup on hand. We might also need to compare fractional measurements when sewing or doing carpentry work in order to cut a piece of material to the right size.

## Want to join the conversation?

- could we multiply with equivalent fractions?(7 votes)
- We probably can.(7 votes)

- yeh you can to equivallant fractions on pizza(9 votes)
- Can we use equivalent fractions on pizza?(7 votes)
- Yes, you could do any equivalent fraction on pizzas.(5 votes)

- So 1/2 is larger than 1/4 because the denominator 2 is a smaller number than 4 so 1/2 is bigger than 1/4? correct or no :)(8 votes)
- How can we find awnsers by calculating which oppretion + - * or /

-(3 votes)- they do not let us(4 votes)

- That's a stupid answer Lindsey. The answer is no because they both have the same numerator, 1.1 is divided into 4 smaller parts than 2 bigger parts. That is the answer.(2 votes)

- im in 4th grade trying to finish up 3rd grade(3 votes)
- why is there no one here idk what to do right now(2 votes)