Main content

# Comparing decimals visually

CCSS.Math:

Sal compares 0.17 and 0.2 using grid diagrams.

## Want to join the conversation?

- Why do we have decimals insted we could round(6 votes)
- I don't think we can round because doctors and scientists might need a very precise measurement for medicine or chemical. If they round the wrong measurement can kill the patient or ruin the experiment.(2 votes)

- so 0.2 is the same as 0.20 but not 0.02?(2 votes)
- Yes. You see, unlike integers, it doesn't make a difference if you add zeros after a digit that is on the right of the decimal point. So it makes a difference if we add zeros to 2, like if you add one zero, it becomes 20, if you add 2, 200, and so on, so forth. but if you add zeros to a number after the decimal point, it doesn't make a difference, so 0.2 would be equal to 0.20, and 0.200000000000. However, if you add zeros after the decimal point but before another real number as a digit, then, yes, it would be different, because if you compare 0.20 and 0.02, it would be like comparing 2 and 20.(11 votes)

- how far do decimals go(2 votes)
- search up how far Pi goes. Decimals can go up to infinity(8 votes)

- I need help I don't know what decimals are! D:(3 votes)
- Decimals as numbers that go after 0. It is like a negative number. 0.10 is like -10 from 0. If you have any other questions I am happy to answer them! :D(3 votes)

- witch is bigger 3.7 or 3.642(4 votes)
- 3.7 because the 7 is in the tens place and 6 is in the tens place so 7>6 3.7 is greater by 0.058(1 vote)

- Which is greater: 0.7 or 0.770?(0 votes)
- 0.770 because the tenths are the same but there are more hundreths than 0.7(6 votes)

- its like saying if i have 0.30<0.4(3 votes)
- so, if your comparing 0.12 and 0.9, 0.9 would be greater since its 90?(3 votes)
- do they just go up to infinity(2 votes)
- How do you compare a whole number with a decimal number?

For example:

Compare 199 to 2.16(2 votes)

## Video transcript

- [Voiceover] The goal
of this video is to try to compare these two quantities. I have 0.17 and I have 0.2, and I wanna figure out
which of these two is larger or maybe they're equal,
and I encourage you to pause the video to
try to figure that out. One way to do it is to
try to visualize these. Each of these large squares
you can view as a whole. And this one on the left, I
have it split into 100 smaller sections 'cause you
notice we have 10 rows, and each row has 10 squares,
so we have 100 squares here. So, each of these squares
represents 1/100 of the whole. And so this number up here, 0.17, we could view that as 17/100. So let's color in 17/100. 17/100 is going to be, so that's 1/100, two, three, four, five, six, seven, eight, nine, 10/100. And notice 10/100, I filled
in one out of the 10 rows, so this is the same thing as 1/10. So that's 10/100, 11/100, 12/100, 13, 14, 15, 16, 17. So, one way to visualize
0.17, which is 17/100, is the fraction of this whole
that is filled in magenta. Now what about 0.2? 0.2 is the same thing as 2/10. So we could take our whole
and divide it into 1/10, divide it into 10 equal
sections which we've done here. Notice each of these
sections is equal to 10/100. And that makes sense,
1/10 is equal to 10/100. Let's fill in two of them
now 'cause we're dealing with 2/10. So let's fill in two of them. We have 1/10 and 2/10. Which of these is larger? We see we're filling in more
of the whole when we're doing 2/10 than when we're doing 17/100. And that makes sense because
2/10 is the same thing. 2/10 is the same thing. Another way of me saying
2/10 is you could write it as 20/100. 20/100 is greater than 17/100. To get the 20/100, you'd have to fill in these three as well. Notice when you fill out those three, you're filling out the same
fraction of your whole. So, which one's larger? 2/10 is. And how do we write that down? When we write it in equality, we wanna open to the larger number. You want to open to that one. So we have 0.17 or 17/100, is less than 2/10. Now, another way that we
could've tackled this, even without having to draw all of this, is we could've just gone
to the largest place value. So if you went to the one's
place, we have zero ones. And we have zero ones here,
so that doesn't help us. Then you go to the next largest, so you go to the 1/10 place. Here you have 1/10, here you have 2/10. So immediately, without
even looking at what comes after this, this could be
0.17358, it could keep going, but the bottom line is
you have more 1/10 here than you have 1/10 here,
which tells you that this one over here is going to be larger. So the general thing is, look
at the largest place value. If one of the numbers has a larger digit in the largest place value,
it's gonna be larger. If they're equal, go to the
next larger place value. And you could keep going like
that, but another way to think about it is just to visualize it, just like we did over here.