If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Estimating limit values from graphs

Worked examples of estimating limits of a function from its graph.

Want to join the conversation?

  • female robot grace style avatar for user Kat
    At , why can't we say that the limit is infinity?
    (89 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Aditya Rewalliwar
    Does there have to be a gap in the equation to find the limit? What's the purpose of this? Also, when we find this number, is the number itself called the equation's "limit"?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Percy Zhu
      No, there does not have to be a gap. They are just for you understand that even if there is a "gap", by which I mean the function at that particular value is undefined or defined as something else that does not match the kind of approaching behavior of the function, the limit is not affected. The 'number itself' will not be the equation's limit, as it only refers to the limit of the function as x approaches one certain point on it.
      (21 votes)
  • blobby green style avatar for user Eva Liu
    Hello, how come on the second graph, the Lim of g(7) is 2? Wouldn't the dot make the limit become two values, therefore making it not exist? I'm confused. Thank you!
    (12 votes)
    Default Khan Academy avatar avatar for user
  • female robot amelia style avatar for user Aishwarya S
    In the first graph, why does the limit as x approaches 2 not exist? Why can't we define limit as two values.. does that not mean that the function of the given parabola is wrong? Should they not be two different functions?
    (6 votes)
    Default Khan Academy avatar avatar for user
    • mr pink red style avatar for user David Lee
      We cannot define limit as two values. You'll learn about the derivatives and you'll know that it's impossible to have two values. You'll have to find the slope of the tangent line at the certain point of x. And if the left limit and the right limit is different, there will be two slopes which are not possible. The slope could be also defined as a velocity. You cannot have two velocities at the same time. It's hard to explain if you didn't learn derivatives.
      Hope this helps! If you have any questions or need help, please ask! :)
      (17 votes)
  • blobby green style avatar for user itanitansuud
    Why is it called limit ? i have no idea why they call it limit. it does not seem to relate what it means
    (7 votes)
    Default Khan Academy avatar avatar for user
  • mr pants orange style avatar for user SirMishraMan
    What's the difference between a function and a limit?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Hasti Hairy
    At why doesn't the limit exist? I thought it would be +infinity
    (4 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user shayseducation
    At it is stated that it does not exist because there are two different values, but in a similar case at there is a value. Could I get some clarification on this?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • starky ultimate style avatar for user Phantom
      At as x approaches 2 the lines on the graph are heading toward different values. The line on the left side is heading towards 2 while the line on the right side is heading towards 5. Since the lines are heading toward different values as x->2, the limit does not exist. However, at , the lines ARE heading towards the same value, even though the function is not necessarily defined at the point they are heading towards.
      (4 votes)
  • aqualine ultimate style avatar for user A Schubert
    for the second graph, wouldn't the limit of G(x) as it approaches 7 equal DNE? it because it has a point directly above the limit?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • aqualine seed style avatar for user Elaina  Griffiths
      This limit as x approaches 7 DOES exist and has a y value of 2. g(7) is the actual value when x=7 and therefore is a closed circle. g(7) is different than the value of the limit when approaching 7. For the limit to NOT exist, you would need two seperate lines approaching two different values.
      (5 votes)
  • male robot donald style avatar for user vamgamer03
    At , if we take a value infinitely close to 7 like 6..999999999999, then this value would be almost 7 therefore would give us the value of g(x) as 5, right? How can the value of g(x) be equal to 2?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user kubleeka
      The value of g(x) is not 2 anywhere in that region. We can make the output of g(x) as close to 2 as we like by picking values of x as close to 7 as we like.
      If you meant 6.999999999999 to be a 6 followed by twelve 9's, that number is not infinitely close to 7, it differs from 7 by 10^(-12). Inputting this number gives an output very close to, but not equal, to 2.

      6.9... with 9's continuing indefinitely is equal to 7, precisely. 6.9... and 7 are different names for the same number. Putting this value in gives us 5 because g(7)=5.
      (4 votes)

Video transcript

- [Instructor] So we have the graph of Y equals f of x right over here and we want to figure out three different limits and like always pause this video and see if you can figure it out on your own before we do it together. Alright now first let's think about what's the limit of f of x it's x approaches six. So as x, I'm gonna do this in a color you can see, as x approaches six from both sides well as we approach six from the left hand side, from values less than six, it looks like our f of x is approaching one and as we approach x equals six from the right hand side it looks like our f of x is once again approaching one and in order for this limit to exist, we need to be approaching the same value from both the left and the right hand side and so here at least graphically, so you never are sure with a graph but this is a pretty good estimate, it looks like we are approaching one right over there, in a darker color. Now let's do this next one. The limit of f of x is x approaches four so as we approach four from the left hand side what is going on? Well as we approach four from the left hand side it looks like our function, the value of our function it looks like it is approaching three. Remember you can have a limit exist at an x value where the function itself is not defined, the function , if you said after four, it's not defined but it looks like when we approach it from the left when we approach x equals four from the left it looks like f is approaching three and then we approach four from the right, once again, it looks like our function is approaching three so here I would say, at least from what we can tell from the graph it looks like the limit of f of x is x approaches four is three, even though the function itself is not defined yet. Now let's think about the limit as x approaches two. So this is interesting the function is defined there f of two is two, let's see when we approach from the left hand side it looks like our function is approaching the value of two but when we approach from the right hand side, when we approach x equals two from the right hand side, our function is getting closer and closer to five it's not quite getting to five but as we go from you know 2.1 2.01 2.001 it looks like our function the value of our function's getting closer and closer to five and since we are approaching two different values from the left hand side and the right hand side as x approached two from the left hand side and the right hand side we would say that this limit does not exist so does not exist. Which is interesting. In this first case the function is defined at six and the limit is equal to the value of the function at x equals six, here the function was not defined at x equals four, but the limit does exist here the function is defined at f equals, x equals two but the limit does not exist as we approach x equals two let's do another function just to get more cases of looking at graphical limits. So here we have the graph of Y is equal to g of x and once again pause this video and have a go at it and see if you can figure out these limits graphically. So first we have the limit as x approaches five g of x so as we approach five from the left hand side it looks like we are approaching this value let me just draw a straight Line that takes us so it looks like we're approaching this value and as we approach five from the right hand side it also looks like we are approaching that same value. And so this value, just eye balling it off of here looks like it's about .4 so I'll say this limit definitely exists just when looking at a graph it's not that precise so I would say it's approximately 0.4 it might be 0.41 it might be 0.41456789 we don't know exactly just looking at this graph but it looks like a value roughly around there. Now let's think about the limit of g of x as x approaches seven so let's do the same exercise. What happens as we approach from the left from values less than seven 6.9, 6.99, 6.999 well it looks like the value of our function is approaching two, it doesn't matter that the actual function is defined g of seven is five but as we approach from the left, as x goes 6.9, 6.99 and so on, it looks like our value of our function is approaching two, and as we approach x equals seven from the right hand side it seems like the same thing is happening it seems like we are approaching two and so I would say that this is going to be equal to two and so once again, the function is defined there and the limit exists there but the g of seven is different than the value if the limit of g of x as x approaches seven. Now let's do one more. What's the limit as x approaches one. Well we'll do the same thing, from the left hand side, it looks like we're going unbounded as x goes .9, 0.99, 0.999 and 0.9999 it looks like we're just going unbounded towards infinity and as we approach from the right hand side it looks like the same thing is happening we're going unbounded to infinity. So formally, sometimes informally people will say oh it's approaching infinity or something like that but if we wanna be formal about what a limit means in this context because it is unbounded we would say that it does not exist. Does not exist.