If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

## Calculus 1

### Course: Calculus 1>Unit 7

Lesson 1: Differential equations introduction

# Differential equations introduction

Differential equations are equations that relate a function with one or more of its derivatives. This means their solution is a function! Learn more in this video.

## Want to join the conversation?

• At we see d^2 y / d x^2. Where is that x^2 coming from? •  As Sal mentioned at , that is the Leibniz notation for second derivatives, with the use of d's being in Leibniz notation (they're not fractions), while the accents such as y', y", and f'(x) and f"(x) being the Lagrange notation for first and second derivatives, and there's also a Newton notation with dots over the y. They are equivalent notations, but sometimes Lagrange and Newton notation are shorter to write, while Leibniz notation is clearer or more explicit regarding the variables which are being used like y and x. The Leibniz notation is named after Gottfried Leibniz, one of the creators of calculus. See:
http://en.wikipedia.org/wiki/Leibniz%27s_notation.
• Don't have a question about this video, but I don't really have a good category to put it... I'm not exactly good at math so forgive me if this question seems really silly.

About a week ago, I was wondering in my math class what the graph x^x looks like, and since we were using the desmos calculator in class, I tried it out. I noticed the function abruptly stopped at the y-axis and did not extend into the second or third quatrains at all. I recognized that some values are complex and cannot be graphed, yet some can, such as (-1, -1) or (-2, 0.25). This lead me to wonder whether there are points in between the integers, and there are! Such as when x = -1/3, yet not all are real numbers. Then I started to find as many points I could in the negative section to see if there was a pattern. I was using pencil and paper for most of my problems to determine whether the y values (given x) were real or not. I was finding y when x = -7/3 when I noticed something strange...

(-7/3)^(-7/3)
= ((-7/3)^(-1))^(7/3)
= (-3/7)^(7/3)
= ((-3/7)^2) * ((-3/7)^(1/3))
= (9/49) * -0.75394744112
= -0.13848014224

Which is completely real... But when you type in (-7/3)^(-7/3) onto most calculators, google included:

You will get this value: 0.0692400711 - 0.119927321i
Which is complex... I asked my math teacher and he said it should be real...

If you have any insight on the weirdness, please give me some insight below! Thanks for your time! :D

P.S.
I know this is also the case for -5/3, try that on paper too...
The 1 calculator that I found that showed a real solution was Symbolab... You can check that out too. •   The reason comes from the Fundamental Theorem of Algebra. In essence, the takeaway from it in the context of this problem is as follows:
When you take the nth root of a number, there are always n different roots

So, if you're interested in cube roots of a number (as you are in this example), you will always have three roots. Some may be imaginary, some may be real. The theorem does not specify. All it specifies is that there will always be three different roots.

So, in the case here, what the calculators are giving you called the "principal root". This is "the most obvious" root. While you might not think it is, when dealing with complex numbers, this is the principal root and it's a little too difficult to explain why without drawings.

The roots of your number are:
* 0.0692400711 - 0.119927321i
* -0.13848
* 0.0692400711 + 0.119927321i

I'm upvoting your question because it's a great question, and very well observed. And let this be a lesson: always be careful what you plug into your calculator, because your calculator will just blindly calculate numbers. It is up to you to make decisions to determine what the answer is at the end of the day.

Edit: This question was so good, I decided to write a more in-depth answer to it on my blog (where I have the freedom to use mathematical notation and add pictures. You can see it here: http://aommaster.com/blog/?p=1667)
• I have been told that differential equations are very useful in physics. Since I don't have the needed knowledge in physics, could you tell me how true the above statement is? •  It's true, I know they come up frequently in Heat Transfer type applications and they are very useful for electrical engineering as well.
• At , how did he come to the conclusion that y1(x) = e^-3x? • The differential equation `y'' + ay' + by = 0` is a known differential equation called "second-order constant coefficient linear differential equation". Since the derivatives are only multiplied by a constant, the solution must be a function that remains almost the same under differentiation, and `eˣ` is a prime example of such a function.

If you were to solve this equation, you would start with a general solution and from there get a more specific solution, in this case a good starting point would be `y(x) = Ce^(Ax)` , where `A` and `C` would be constants that you try to limit by inserting this general solution on the differential equation.

After doing that you will find that `A` can be either `1` or `-3` for this particular differential equation (`y'' + 2y' - 3y = 0`); so the general solution becomes `y(x) = C₁eˣ + C₂e⁻³ˣ`, where `C₁` and `C₂` are only limited by initial conditions (not given in this problem, so you can choose whatever values you want and it will work).

Sal choose `C₁ = 0` and `C₂ = 1`, so that is why he gave as a specific solution `y(x) = e⁻³ˣ`
• What is the necessity of using differential equations over algebric equations? • Algebraic equations has numerical solutions whereas differential equations have functions as their solutions. This is significant because if you have a relationship that evolves over time, a numerical solution is a constant which doesn't really model how things are changing; whereas functions can model changes over time. A good example of this is inflation rate of a balloon, if you wanted to see how much the volume is changing per instant then you'd have to write down a differential equation - and the solution would give you an answer. You can use this, then, to approximate things - like how much a balloon can stretch? How long will it take for the balloon to burst? And other similar questions.
• What does the second derivative mean? • The differentials I'm learning about in math class include things like dy=f'(x)(dx) and (delta)x and (delta)y, but these topics don't show up in this Differential video. Is the thing that I'm learning actually differentials, or are they under a separate name? • Differentials, like `dx`, `dy`, represent a infinitesimal change in the variable, and are first introduced as part of basic calculus (or even precalculus, but without explaining what they are).

Differential equations are much more advanced, and should be studied once you have a firm knowledge of both differential calculus and integral calculus.
• When doing differentiation for trigonometric ratios .I saw a question that d/dx (tan(2x))
and its answer is given as 2sec(2x)^2.Here 2x is an angle then why there is a need of differentiating the angle 2x .Can't we simply write it as sec(2x)^2   