If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Intro to rational exponents

What does it mean to take a number by a power which is a unit fraction? For example, what is the result of 3 raised to ½? Created by Sal Khan.

Want to join the conversation?

  • male robot hal style avatar for user Wudaifu
    At , Sal asks, "But what is the square root of 4, especially the principle root mean?" and then goes on to ask, "what is a number that if I were to multiply it by itself...I'm going to get 4." I understand that +2 is apparently "the principle root", but what about -2, which if multiplied by itself is also equal to 4? What kind of root is -2 and why is it that only the "principle root" is given as the answer to "what is the square root of 4?"
    (141 votes)
    Default Khan Academy avatar avatar for user
    • leaf grey style avatar for user Timothy Topolski
      The principle root and square root are two different things. The square root is asking that question, which number squared equals that number, say, 4. This does leave two answers, positive and negative, so you were correct. However, the principle root is basically the absolute of the square root, or √|x|, which means that it is only positive. This was created, I think, for geometry, because you can't have a triangle with side lengths of -3, -4, and -5. Also, if this is a comfort to you, I didn't know about principle roots until recently. We'd say that the square root of 4 is ±2, for that same reason you mentioned.
      (145 votes)
  • orange juice squid orange style avatar for user Abraham George
    Should I memorize some of the basic exponents?
    Example:
    4^3
    (27 votes)
    Default Khan Academy avatar avatar for user
  • old spice man green style avatar for user Academy User
    In fractional exponents, i'm curious on what to do if there is a fraction such as 5/7 or 9/17 as an exponent. Do you take the square root and then multiply, or do something else?
    (22 votes)
    Default Khan Academy avatar avatar for user
  • marcimus pink style avatar for user Petra
    What do you do when you have for example 2/3 to the power of 2?
    (14 votes)
    Default Khan Academy avatar avatar for user
  • female robot grace style avatar for user Ayla
    so if 8^1/3 = ³√8 then would 8^2/3 = 2³√8?
    (6 votes)
    Default Khan Academy avatar avatar for user
    • leafers seedling style avatar for user Fieso Duck
      No, unfortunately this would be wrong. You propably have not learned this yet, but you can rewrite any exponential expression of the form x^(n*m) as (x^n)^m.
      So when you look at your example of 8^2/3, you could rewrite it as 8^(2*1/3).
      By matching the corresponding parts to x^(n*m), this could then be expressed in the form of (x^n)^m:
      (8^2)^(1/3)
      = 64^(1/3)
      = 4

      Alternatively you could swap the 2 and the 1/3, which might make the problem easier. You can do this because of the the commutative property of multiplication, which allows you to "choose" wether you see 2 as the m or the n (the same thing goes for the 1/3). This would give you:
      (8^(1/3))^2
      = (2)^2
      = 4

      I hope this will help you.
      (24 votes)
  • female robot grace style avatar for user Anna
    okay what are the 3 cube roots of 8? (cube numbers have 3 roots, square numbers have 2 roots)

    by cube number I mean x^3=y
    by square number I mean x^2=y

    now I already know 2 is a cube root but it is not the Only cube root. there are two others. what are those other cube roots?
    (8 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user Simon Lin
    At no part of the video did Sal explain what to do if a number is raised to, for example, the 2/5th power? What if the fraction has an integer larger than 1 for its numerator?
    (6 votes)
    Default Khan Academy avatar avatar for user
    • aqualine tree style avatar for user Judith Gibson
      What a good question!
      If you have ANY fractional power, the denominator tells what root to take and the numerator tells what power to raise that number to.
      For example, 16^3/2 means take the square root of 16, then raise that to the 3rd power
      (getting 64 as the answer).
      Another example, 32^(2/5) means take the fifth root of 32, then raise that to the 2nd power (getting 4 as the answer).
      (7 votes)
  • starky ultimate style avatar for user Patrick
    I know that 7^0 is one, and is so for all numbers other than zero. But what I want to know is why it isn't zero. Or, in other words, why isn't 7^0 equal to zero?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user Yan
    Sal writes all the rational exponents as fractions. But can exponents be in decimal form?
    For example, x^(-2.5) and x^(-5/2), are both of them correct?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      The two versions are equivalent. However, the fraction form is easier to understand. The denominator of the fraction tells you the radical index. You have a denominator of 2, so it indicates a square root. If the denominato is 3, then the problem is working with a cube root. It it is 4, then the problem is working with a 4throot.

      If you have a problem like: (-8)^(2/3) you can see that you need to do a cube root (the 3 in the denominator) and then square the result (the 2 in the numerator.
      (-8)^(2/3) = cubert(-8)^2 = (-2)^2 = 4

      If the exponent is in decimal form, that information is not visible. You would have to convert to a fraction to make the info visible. There is also the risk that you convert a fraction to decimal, find it repeats and you then round the decimal value. If you happen to do this, then you have changed the exponent. For example: An exponent of 1/3 = Do a cube root. If you convert it to decimal form: 1/3 = 0.33333... with the 3 repeating. If it gets rounded to 0.3, the exponent would then be 3/10 which means do the 10th root, then cube the result.

      Hope this helps.
      (6 votes)
  • leaf grey style avatar for user Elijah Hemingway
    Why is anything raised to the zero power 1? It doesn't make sense to me and seems like a made-up answer. It seems to me like anything raised to the zero power should equal zero. That kind of answer seems more logical.
    (2 votes)
    Default Khan Academy avatar avatar for user
    • spunky sam blue style avatar for user ‏‏‎ ‎Oliver
      The concept of a number raised to the zero power equals one can be explained in several ways and is based on basic multiplicative concepts. Looking at the pattern established when a number is raised to different powers, each one less than the next, helps explain the concept.

      When a number such as 2 is raised to different powers, a particular pattern is seen as the exponent changes:

      2^6 = 2*2*2*2*2*2 = 64 2^5 = 2*2*2*2*2 = 32 2^4 = 2*2*2*2 = 16 2^3 = 2*2*2 = 8 2^2 = 2*2 = 4 2^1 = 2

      As the exponent value moves from 6 to 1, we see that the resulting values are reduced, consecutively, dividing by 2: 64/2 = 32, 32/2 = 16, 16/2 = 8, 8/2 = 4 and 4/2 = 2. Extrapolating from this pattern, an exponent of 0 will result in an answer of 2/2 = 1, proving 2^0 = 1.

      The number 2 was used to provide an example; however, this concept applies to all nonzero numbers.
      (7 votes)

Video transcript

We already know a good bit about exponents. For example, we know if we took the number 4 and raised it to the third power, this is equivalent to taking three fours and multiplying them. Or you can also view it as starting with a 1, and then multiplying the 1 by 4, or multiplying that by 4, three times. But either way, this is going to result in 4 times 4 is 16, times 4 is 64. We also know a little bit about negative exponents. So for example, if I were take 4 to the negative 3 power, we know this negative tells us to take the reciprocal 1/4 to the third. And we already know 4 to the third is 64, so this is going to be 1/64. Now let's think about fractional exponents. So we're going to think about what is 4 to the 1/2 power. And I encourage you to pause the video and at least take a guess about what you think this is. So, the mathematical convention here, the mathematical definition that most people use, or in fact that all people use here, is that 4 to the 1/2 power is the exact same thing as the square root of 4. And we'll talk in the future about why this is, and the reason why this is defined this way, is it has all sorts of neat and elegant properties when you start manipulating the actual exponents. But what is the square root of 4, especially the principal root, mean? Well that means, well, what is a number that if I were to multiply it by itself, or if I were to have two of those numbers and I were to multiply them, times each other, that same number, I'm going to get 4? Well, what times itself is equal to 4? Well that's of course equal to 2. And just to get a sense of why this starts to work out, well remember, we could have also written that 4 is equal to 2 squared. So you're starting to see something interesting. 4 to the 1/2 is equal to 2, 2 squared is equal to 4. So let's get a couple more examples of this, just so you make sure you get what's going on. And I encourage you to pause it as much as necessary and try to figure it out yourself. So based on what I just told you, what do you think 9 to the 1/2 power is going to be? Well, that's just the square root of 9. The principal root of 9, that's just going to be equal to 3. And likewise, we could've also said that 3 squared is, or let me write it this way, that 9 is equal to 3 squared. These are both true statements. Let's do one more like this. What is 25 to the 1/2 going to be? Well, this is just going to be 5. 5 times 5 is 25. Or you could say, 25 is equal to 5 squared. Now, let's think about what happens when you take something to the 1/3 power. So let's imagine taking 8 to the 1/3 power. So the definition here is that taking something to the 1/3 power is the same thing as taking the cube root of that number. And the cube root is just saying, well what number, if I had three of that number, and I multiply them, that I'm going to get 8. So something, times something, times something, is 8. Well, we already know that 8 is equal to 2 to the third power. So the cube root of 8, or 8 to the 1/3, is just going to be equal to 2. This says hey, give me the number that if I say that number, times that number, times that number, I'm going to get 8. Well, that number is 2 because 2 to the third power is 8. Do a few more examples of that. What is 64 to the 1/3 power? Well, we already know that 4 times 4 times 4 is 64. So this is going to be 4. And we already wrote over here that 64 is the same thing as 4 to the third. I think you're starting to see a little bit of a pattern here, a little bit of symmetry here. And we can extend this idea to arbitrary rational exponents. So what happens if I were to raise-- let's say I had, let me think of a good number here-- so let's say I have 32. I have the number 32, and I raise it to the 1/5 power. So this says hey, give me the number that if I were to multiply that number, or I were to repeatedly multiply that number five times, what is that, I would get 32. Well, 32 is the same thing as 2 times 2 times 2 times 2 times 2. So 2 is that number, that if I were to multiply it five times, then I'm going to get 32. So this right over here is 2, or another way of saying this kind of same statement about the world is that 32 is equal to 2 to the fifth power.