If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

RGB color model

Overview of the RGB color model.

Want to join the conversation?

  • aqualine seedling style avatar for user Victoria
    While goofing around in Photoshop, I found out that when you make new files, they have these color options. I now understand what RGB stands for, but what does CMYK stand for? Does it change how color is perceived? What is it usually used for?
    (23 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user Υατrіκ Ρατεl
    What is the extra color a tetrachromat can perceive? Or am I unable to understand what it is, never having seen it?
    (8 votes)
    Default Khan Academy avatar avatar for user
  • starky sapling style avatar for user ForgottenUser
    What causes colorblindness? Is it a cone that is functioning poorly?
    (7 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user gusevalice
      Color blindness is a genetic condition caused by a difference in how one or more of the light-sensitive cells found in the retina of the eye respond to certain colors. These cells, called cones, sense wavelengths of light, and enable the retina to distinguish between colors.
      (5 votes)
  • blobby green style avatar for user maya.goldfeld
    In art we use Magenta, Cyan and yellow for the chromatic circle. But if our color receptors are green, blue and red, shouldn't we use the them instead of Magenta Cyan and Yellow? Since color only exists inside our brain shouldn't we match them? In our brains, is green a mix of blue and yellow or a wavelength?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user 💖💖laura💖💖
    at he says that there are certin people that have 4 color receptors in their eyes, while most people only have 3. how do you know if you or someone you know is one of those people?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user Emma
    For a color to be more or less saturated, do the amplitudes change in the wavelengths of that color?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user gusevalice
    quiz question! Why do we use red light to signifie danger instead of blue or purple? (pls up vote this but you dont have to)!
    (3 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user pandaz461
    Is the RGB accurate for real life? I thought that CMYK was preferred for anyone who uses color theroy/sciences.
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leafers ultimate style avatar for user Bryan Ray
      Red, Green and Blue are known as the "additive primaries." This is the color model used for light and projection. Mix all three together and you get white light (approximately).

      Cyan, Magenta and Yellow are the "subtractive primaries." This is the color model used for printing and painting. Mix all three together and you get black, theoretically. In reality you get an ugly, muddy brown because chemistry is hard. That's why the blacK cartridge is added.

      Although we often treat them as two different systems they are actually the same one. The additive primaries are the subtractive secondaries and vice versa. In other words, if you subtract Red you get Cyan. If you subtract Green you get Magenta, and if you subtract Blue you get Yellow. Try it out in the RGB color matching practice, and you'll see it.

      The RGB model is most commonly used by computer animators because we deal with light more often than we do print. Graphic designers are more likely to use print, so they think in terms of CMYK.
      (3 votes)
  • stelly blue style avatar for user Marlyn Cardenas
    I dont really have a question
    (3 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user DAPREQUELMEMER
    at all i cared about was dat omelet. i cant listen anymore, imma o get something to eat
    (3 votes)
    Default Khan Academy avatar avatar for user

Video transcript

(light tapping) - We've just seen the beautiful rainbows you get when you refract light with a prism. Now let's think about how we actually perceive the colors of the rainbow in the first place. What makes yellow look like yellow? Inside our eyes, we have special color receptors called cones, that are sensitive to specific wavelengths of light. For example, one kind of cone is most sensitive to red light, so when long wavelength light hits them, that is from the red end of the spectrum, they respond by sending a corresponding electrical signal to the brain, and the magnitude of this signal will depend on how much red light is present in the light. Our eyes have three main kinds of color receptors. One is sensitive to the longer wavelengths, redder light, one for medium wavelengths, or greener light. And one for shorter wavelengths, or the bluer light. The cool trick is our brain blends signals from these three receptors to represent any color. Colored television, and computer monitors, borrowed this same idea of color receptors from our eyes. If you zoom into a computer screen, you'll see it's made up of tiny rectangles, or pixels. Each of which contain a red, green, and blue region. To display colors, the monitor illuminates these three colors accordingly. To make the screen appear yellow, the monitor turns on only the red and green regions in each pixel. From far away, these blend into yellow. And that's how we can digitally create any color using just different amounts of red, green, and blue. In our next exercise, you'll try to create a color by mixing together different amounts of red, green, and blue on your monitor. For example, to get this shade of green. It's interesting to note that other animals have different cones in their eyes. For example, dogs only have cones that are sensitive to yellow and blue, so red light doesn't send signals to their brain at all. The mantis shrimp, on the other hand, holds the current record for the most number of color receptors in its eyes, 12 different kinds. And scientists still don't know how they're all used to perceive color. - Voila, he is clean. (exciting fun music) - Beyond that though, there's also a certain class of people, they're all females, it turns out, who we call tetrachromats. They have four different color receptors in the eye, whereas the vast majority of the population has three. And so we think, and expect, that their ability to discriminate colors, to basically tell the difference between two very, very similar shades, is probably much more precise for the tetrachromats. I wish I was one.