Main content
Responding to stress
Created by Ryan Scott Patton.
Want to join the conversation?
- the video states that vasoconstriction occurs in fight or flight response in the arms/legs, but in my notes the opposite thing is stated - vasodilation occurs in skeletal muscles in order to quickly react to whatever stress is happening. which is true?(25 votes)
- Epinephrine and Nor-epinephrine (aka: adrenaline and nor-adrenaline) provide vasoconstriction.... with the exception of skeletal muscles and epinephrine. Specifically, epinephrine causes the dilation of skeletal muscles allowing for more blood flow to the muscles for the fight or flight. http://www.britannica.com/EBchecked/topic/190049/epinephrine-and-norepinephrine(10 votes)
- The information on vasoconstriction needs to be corrected.(14 votes)
- There is a mistakes here. There would be vasodilation in the arms and legs. During fight and flight, the body wants more blood in their arms and legs to be able to escape threats. 2:30
It's explained in a section of the link below
https://youtu.be/0IDgBlCHVsA?t=4m29s(10 votes)- No, there wouldn't. Vasodilation occurs in your core to provide more blood to the heart, lungs, and brain. Vasoconstriction occurs in arms and legs.(0 votes)
- Pretty sure peripheral vasoconstriction is fingertips and toes, would a fight flight response not require the function of big skeletal muscles?(5 votes)
- Is "tend and befriend" the same as "rest and digest?"(1 vote)
- From my understanding, they are different. Tend and Befriend is still a response to stress. Imagine a horror movie where a person is running away from a murderer. In that situation, the person running away may be more likely to trust a random stranger they meet driving on a highway in the dark. Whereas if that person wasn't in a stressful situation (being chased by the murderer) they probably wouldn't put as much trust into a stranger on a highway.
On the other hand, rest and digest is talked about with the parasympathetic system and occurs when you're not stressed out.(5 votes)
- what crucial parts? more important than legs to run with? 2:55(3 votes)
- is there a connection between pituitary and nervous system(2 votes)
- The pituitary gland is connected to the brain and receives information from the hypothalamus of the brain, and part of it is actually made up of axons from the hypothalamus. For this reason, it's referred to as neurosecretory. It's one of the most important connections between the nervous system and the endocrine systems of our body.(2 votes)
- I believe there would be peripheral BV dilation. I understand that effects are different for skeletal muscle, but wouldn't the periphery be more skeletal muscle and therefor more overall vasodilation?(2 votes)
- Pretty sure peripheral vasoconstriction is fingertips and toes, would a fight flight response not require the function of big skeletal muscles?(1 vote)
- If you watch brain games it say the same things but beater.(1 vote)
Video transcript
- [Instructor] Walter Cannon
was an American doctor in the early 1900s who
spent a lot of his career expanding our understanding
of homeostasis, which is the tendency of our body to respond to the environment in a way that keeps the internal
workings of our body stable So the body's ability to
maintain the right temperature, the body's ability to maintain
the right pH, et cetera. So as a part of his study of homeostasis, Dr. Cannon was really interested in the homeostatic response of
animals to threats or dangers. So threats or dangers. And threats or dangers are
what we've been referring to as stressors. So basically Dr. Cannon was interested in our homeostatic response to stressors. And he coined the response that he saw The Fight or Flight Response. Because he basically saw
that we were either going to prepare to fight against
these threats or dangers, or we were gonna prepare to run away from these threats or dangers. So the fight or flight response that Cannon was so interested in, it revolves around the inner
workings of the nervous system, and the endocrine system. So on the nervous system side of things, we have the sympathetic nervous system. So we have our brain and our spinal cord that make up the central
part of our nervous system. And then nerves branch
off of this central core. Part of our nervous system that
we don't always think about or aren't thinking about to control is the autonomic nervous system. A branch of that autonomic nervous system that's going on behind the scenes is the sympathetic nervous system. And this is the aspect
of our nervous system that's gonna transition our body into the get out of danger mode. And so, with that we'll see increased heart rate
in order to pump blood with oxygen and nutrients
all around our body. So we have an increased heart rate, that heart's just gonna beat a lot faster. And we're also gonna see
increased respirations. So we have an increased respiratory rate. And that gives us the ability to get more oxygen into our blood and all the way to our tissues. And it gives us the ability
to expel more carbon dioxide as a waste product from our muscle work. And then we're also gonna see increased peripheral vasoconstriction. So the blood vessels in our
peripheral parts of our body, like our arms and our legs, are gonna clamp down and
they're gonna tighten in order to push more
blood to our core area. Because our arms and legs are important, but we can live without them. It would be a lot harder
to live without our brain or our vital organs, so we need a lot of our blood forced into those really crucial areas. So we're gonna see peripheral
vasoconstriction happening in this fight or flight response. And then lastly, we're gonna
turn off less important things, like digestion and immune
function and ovulation, because these things are great if we're just hanging out, but they're definitely less crucial in life or death situations. So teaming up with the
sympathetic nervous system, we have the endocrine system. And so the endocrine
system is gonna supply some of the hormones. Which, remember, are
those chemical messages in order to rally the
troops around the body. And the two biggest hormone players actually come out of the same organ, which sit on top of our
kidneys, the same organs. And those are your adrenal glands. And so the inside of our adrenal glands, this hash part, is called the medulla. And from the medulla we get
our catecholamine hormones. And our catecholamine hormones include epinephrine and norepinephrine. So sometimes those are more often called adrenaline and noradrenaline. But these are the hormones
that are major communicators for increasing the heart
rate and blood pressure, and otherwise communicating
that sympathetic response that we just talked about. So those are really supporting the sympathetic nervous system, these hormones coming out
of the adrenal medulla. And then on the outside, this bolder part of our adrenal gland, that's called the cortex. And out of the cortex comes some other major stress hormones. And the biggest one is a
glucocorticoid called cortisol. And it helps me remember that
cortisol comes from the cortex if I'm thinking about that
cort, kind of root word, or root part of the word. But cortisol is a steroid hormone which contributes to the stress response by redistributing glucose
energy in the body and suppressing the immune system. And so just to review real quick, we have this fight or flight
response to stressors. So we're preparing to
either fight or to run away. And that's being communicated by our sympathetic nervous system, which is being assisted by the hormones of our endocrine system. And so we have this
fight or flight response that Dr. Cannon coined the terminology of. But we also have another response
called Tend and Befriend. We're calling this affiliative response the tend or befriend response. Because it turns out that sometimes a better response to stress
is to huddle together and to form support systems. And an important biological
component to this response is the hormone oxytocin. And oxytocin is associated
with things like pair bonding. And so it can moderate
this stress response. And it's really interesting if you know much about oxytocin, it's majorly integrated
with the hormone estrogen. And so estrogen is a major
sex hormone in women. And so what follows is kind of a naturally greater disposition to this
tend and befriend response in women much more so than in men. And so we have these two
major categories of response to stressors. We have this fight or flight response and this tend and befriend response. And in the later part of the 20th century a guy named Hans Selye continued the stress
research of Dr. Cannon. And he was able to
classify distinct stages to the adaptive fight or flight and tend and befriend responses. And he called this generalization the General Adaptation Syndrome. So I'm gonna shorten that to G.A.S. For General Adaptation Syndrome. And he saw this General
Adaptation Syndrome as having three phases. And in the first phase, he
called it the alarm phase. And in this alarm phase, that stress reaction kicks in. So your heart starts racing, and your resources are mobilizing. You're ready to fight
or to run for your life. And that's the alarm phase. In the second phase, which he
called the resistance phase, we're actually fighting or
fleeing, or huddling together. Our temperature is elevated and our blood pressure and
rate of breathing remain high. And we're also bathing our
body in the stress hormones like cortisol. And so our body has reserves to react to those acute stressors in this resistance phase, but those reserves only go so far. And that brings us to the
third phase of the G.A.S., and that's exhaustion. So if the resistance stage
isn't followed by recovery, the body's stress resources get depleted and it leads to exhaustion. And our tissue and muscles become damaged and our dampened immunity can make us really susceptible to illness. And all around over exposure to stress can have some really damaging effects. Because like many animals, our body's pretty well equipped
to handle short term stress, but the problem is that when we apply those life saving stress reactions to our daily commute
and to our 9 to 5 jobs, and to other psychosocial
trivialities of life, we end up spending way too much time experiencing the negative
consequences of stress, this exhaustion consequence. And it has some pretty nasty consequences. Next up we're gonna explore what happens to our body's
behaviors and emotions when we're exposed to chronic stress.