If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content
Current time:0:00Total duration:6:52

Introduction to exponential decay

Video transcript

two videos ago we learned about half-lives and we saw that they're good if we are trying to figure out how much of a compound we have left after one half-life or two half-life or three half-lives we can just take half of the compound at every period but it's not as useful if we're trying to figure out how much of a compound we have after one half of a half-life or after one day or ten seconds or ten billion years and to solve to address that issue in the last video I proved and it involved a little bit of of sophisticated math and if you haven't taken calculus you can really just skip that video you don't have to watch it for an intro math class but if you're curious that's where we proved the following formula that at any given point of time if you have some decaying some decaying atom some element it can be described as the amount of element you have at any period of time is equal to the amount you started off with times e to some constant in the last video I use lambda I could use K this time minus K times T and then for a particular element with a particular half-life you can just solve for the K and then apply it to your problem so let's do that in this video just so that all of these variables can become a little bit more concrete so let's figure out the general formula for carbon carbon-14 that's the one that we addressed in the half-life we saw that carbon-14 has a half-life of 5730 years so let's see what that if we can somehow take this information and apply it to this equation so this tells us that after one half-life so T is equal to 5730 n of 5,730 is equal to the amount we start off with so we're starting off with well we're starting off with n sub 0 times e to the minus wherever you see the T put the minus 5,700 you put the 5730 so minus K times 5730 that's how many years have gone by and half-life tells us that after 5730 years we'll have half of our initial sample left so we'll have half of our initial sample yet left so if we try to solve this equation 4k what do we get divide both sides by and not get rid of a D variable and then we're left with E to the minus 5730 K I'm just switching these two around is equal to 1/2 if I take the natural log of both sides what do we get we get natural log of e to anything the natural log of e to the a is just a so the natural log of this is minus 5730 K is equal to the natural log of 1/2 I just took the natural log of both sides natural log and natural log of both sides of that and so to solve for K we could just say K is equal to K is equal to the natural log of 1/2 / - 5730 so it equals 1.2 times 10 to the minus 4 so now we have the general formula for carbon-14 given its half-life at any given point in time after our starting point so this is for let's call this for carbon-14 for C 14 the amount of carbon-14 we're gonna have left is going to be the amount that we started with times e to the minus K K we just solved for 1.2 times 10 to the minus 4 times the amount of time that has passed by this is our formula for carbon if we were do it for carbon-14 if we were doing this for some other element we would use that elements half-life to figure out how much we're gonna have at any given period of time to figure out the K value so let's use this to solve a problem let's say that I start off with I don't know let's say I start off with 300 grams of carbon carbon 14 carbon 14 and I want to know how much do I have after after I don't know after 2000 years 2000 years how much do I have well I just plug into the formula n of 2000 is equal to the amount that I started off with 300 grams times e to the minus 1.2 times 10 to the minus 4 times T is times 2,000 times 2000 so what is that so this is equal to 236 grams so just like that using this exponential decay formula I was able to figure out how much of the carbon I have after kind of an unusual period of time an odd half-life period of time let's do another one like this let's say let's go the other way around let's say I'm trying to figure out let's say I start off with let's say I start off with 400 grams of c14 and I want to know how long so I want to I don't I want to know what I want to a certain amount of time does it take for me to get to 350 grams of c14 so you just say that 350 grams is how much I'm ending up with it's equal to the amount that I started off with 400 grams times e to the minus K that's minus 1.2 times 10 to the minus 4 times time and now we solve for time so you get 0.875 is equal to e to the minus 1.2 times 10 to the minus 4t you take the natural log of both sides you get the natural log of 0.875 is equal to the natural log of e to anything is just the anything so it's equal to minus 1.2 times 10 to the minus 4 T and so T is equal to this divided by 1.2 times 10 to the minus 4 so the natural log point 8 7 5 divided by minus 1.2 times 10 to the minus 4 is equal to the amount of time it would take us to get from 400 grams to 350 my cell phone is ringing let me turn that off to 350 so let me do the math so this is equal to 1112 years to get from 400 to 350 grams of my substance this might seem a little complicated but you just have to if there's one thing you just have to do is you have to remember this formula