Main content
MCAT
Course: MCAT > Unit 7
Lesson 18: Reproductive system- Reproductive system questions
- Reproductive system questions 2
- Welcome to the reproductive system
- Anatomy of the male reproductive system
- Transport of sperm via erection and ejaculation
- Spermatogenesis
- Testosterone
- Basics of egg development
- The ovarian cycle
- Meet the placenta!
- Reproductive cycle graph - Follicular phase
- Reproductive cycle graph - Luteal phase
- Estrogen
- Maternal changes in pregnancy
- Labor (parturition)
- Breast anatomy and lactation
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Testosterone
Explore the role of testosterone, the primary male sex hormone, in the human body. Learn how it's produced in the testes and travels via the bloodstream to influence various biological functions. Understand its impact on secondary sex characteristics, behavior, and red blood cell production. Discover the self-regulating feedback loop that maintains testosterone homeostasis. Created by Vishal Punwani.
Want to join the conversation?
- Which anterior pituitary hormone stimulates the release of testosterone?(9 votes)
- After receiving signals from the hypothalamus (GnRH), the anterior pituitary releases FSH and LH; the latter causes the interstitial cells (of Leydig) to release testosterone.(1 vote)
- Why is testosterone in need of a carrier protein ? I mean isn't it a lipid hormone, it can just diffuse though the cell surface membrane and to the nucleus ?(6 votes)
- Testosterone is made as a cholesterol derivative. These are huge molecules. They require specific transporters for feasibility and regulation.(10 votes)
- What is the role of testosterone in females?(5 votes)
- Testosterone conveys powerful anti-aging effects. It turns fat into muscle, keeps skin supple, increases bone mineral density, puts women in a positive mood and boosts the ability to handle stress. Testosterone also supports cognitive functioning and keeps the liver and blood vessels clean.
So testosterone acts sort of like ppar delta which is a molecule that affects the DNA expression inside muscle cells to burn more fat for the same amount of work.
However there is a bad side to giving females testosterone for these effects. It inhibits female processes like menstruation and ovulation which require estrogen(of which there are 3 types) and progesterone.(7 votes)
- Females also have testosterone, is this the reason why do some female does possess facial hairs and broad shoulders ?
Females do not have testis so how come they have testosterone ?(2 votes)- Both males and females make a small amount of sex hormones in their adrenal cortex, although the majority is made in their gonads. Sex hormones are similar in structure and both males a nd females have some estrogen and testosterone respectively.https://en.m.wikipedia.org/wiki/Sex_steroid(9 votes)
- does ejaculating or sex uses testosterone? and will having too many of them will make the body stop producing it or even drop its level severely ?(1 vote)
- There is no relationship between Testosterone and ejaculation. Even though, there have been studies where abstinence does lead to higher testosterone levels, ejaculation does not lead to higher or lower blood testosterone levels. Your body is constantly producing sperm and ejaculation would actually lead to increased spermatogenesis (sperm production). Your body is constantly working to replace old sperm cells by creating new ones.(5 votes)
- Does testosterone enter through a cell membrane by osmosis ?(1 vote)
- Testosterone is a cholesterol based hormone that diffuses into a cell and its nucleus to find a cell receptor. Lipids can move through a cell membrane.(5 votes)
- How do females get testosterone when they don't have testes?(2 votes)
- Does testosterones in transgender people flow through or travel in the body the same? Whether it be injected or consumed, it begins to do the same thing, right? (Just not being produced from the testes obviously!)(2 votes)
- you say that testostrone are present in both male and female
what is the function of these harmones in female(2 votes) - So if a girl would exercise and you would give them testosterone pillers they will be able to get more muscles ? Or is there any contraindications of taking it ? Just regular Testerone you can buy in a fitness shop.(1 vote)
- Exercise stimulus and sufficient protein & energy intake are the biggest factors in developing a muscular physique though androgens, such as testosterone, do promote the process of muscle development in both sexes. Testosterone does not annihilate the female reproductive system reliably and hence does not serve as a contraceptive. Once the breasts have developed the fat tissue may atrophy but they cannot be "lost" completely without surgery as the ducts are distinct, differentiated structures in the subcutaneous layers. Testosterone will not cause significant apoptosis/necrosis of these structures.(2 votes)
Video transcript
- Let's meet testosterone. We produce chemical signals in our bodies that allow one part of
our body to communicate with other parts of our bodies, and these signals are called hormones. Testosterone is one of these hormones. So testosterone is produced
by our testes here. So let me draw a zoomed
in view of one testis. And after the testes make testosterone in cells that they have
called Leydig cells, that testosterone is transported
to other parts of the body via the bloodstream. So I'm drawing red blood cells in red, and I'll show you the little molecules of testosterone in green. And these blood vessels carry
testosterone all over the body so that it can carry out all
of its biological functions. So let me just point out that testosterone isn't only produced in men. It's actually produced in men and women, but males past the age of
puberty, about 12 or 13 years old, have about seven or eight
times the testosterone that women of the same age as them do. So we still refer to it as
the primary male sex hormone. And to clarify, I'm just
calling it a sex hormone because it's produced primarily by some of the male sexual
organs, i.e., the testes. So I've told you that
it's made in the testes and that it travels around
in the blood vessels to every part of the body, but once it gets to its
target, what exactly happens? How does it work? So to show you this, I'll blow up a little
cell here in the thigh. So here you have a cell, and up here, or lining the cell or
just beside the cell, you have that bloodstream that the testosterone
is floating around in. And so I'll draw back in
those red blood cells, and let's just say the
blood is going that way, and here's our testosterone. So when testosterone sees a
cell that it wants to enter, it crosses through the cell membrane, which is sort of the cell's barrier to things outside the cell, almost like a selectively permeable gate, and once the testosterone
gets inside the cell, it sort of meets this carrier protein, and the carrier protein
is something that will bind the testosterone and take it to its next destination within the cell. So we'll draw that
carrier protein as a taxi. We have testosterone sitting right here in the backseat of the taxi, and then that carrier protein just drives it a little short way to something called the nucleus. And the nucleus contains our DNA, and those are the blueprints
of how we're made. So in red I drew a specific
part of our DNA called a gene, and our DNA is made up
of millions of genes. So genes are little segments of the DNA, and some hormones interact with our genes to change our characteristics. So that's exactly what testosterone does. It jumps out of the cab, once
it gets into the nucleus, and it sort of binds onto that gene. I'll just label that that's a gene. And when testosterone binds the gene, it's able to influence its function. So, for example, if the gene told the body to make more muscle, then testosterone
interacting with that gene would increase the rate
of muscle production, and, in fact, that is one
of testosterone's functions, and we'll touch on that
a little bit later. Now, one more note on this topic. Depending on the type of cell
that testosterone enters, it can be converted
into a different hormone before going to the nucleus
to interact with a gene. So the two possibilities are
dihydrotestosterone or DHT and estrogen, and that may
sound a little counterintuitive, because I think most
people think of estrogen as a female-only hormone, but actually males need estrogen as well, and we have a little bit of it, and it comes from testosterone. And even in the female, testosterone is converted to estrogen, and that's how estrogen is made. It just happens a lot
more often in the female. Having said that, in men
only about 7% of testosterone is converted to DHT, and less than 1% is converted to estrogen. So it's primarily
testosterone that's exerting all of the hormonal effects. You're probably wondering
what some of the roles of testosterone are. So let's cover those. So testosterone actually starts working when you're really young, when you're still in development
in your mother's womb, and what it does there is it induces your reproductive organs to differentiate into male reproductive organs. Because when males and females start out in development in the womb, they have the same precursor
reproductive structures, and so the presence of testosterone actually pushes the reproductive organs to turn into masculine ones. Another really important
thing testosterone does is, you remember how we said that testosterone is made in the Leydig cells here, and the Leydig cells are one
of the cells in the testes? When testosterone starts to be released in higher quantities
from those Leydig cells, once you hit puberty around age 12 or 13, that testosterone signals
other cells in the testes to start the process of making sperm, a process called spermatogenesis. After sperm production starts, having a baseline level of
testosterone in the testes keeps sperm production going. So these are the major functions that testosterone has on
the male reproductive tract. But testosterone actually has a lot of other functions around the body. It's responsible for what we call secondary sex characteristics, and these are just physical traits that we typically think of
being masculine or feminine. For example, it stimulates
the growth of facial hair, armpit hair, pubic hair, and
hair on your arms and legs and your chest, just to name a few areas. It's also responsible for
the deepening of your voice that happens as you develop as a male, and that happens because
testosterone induces growth of the voice box or the larynx, and some people know
that as the Adam's apple. That's why you see a
prominent sort of bulge in the throats of males. Another thing it does is it induces male-pattern fat distribution. And so, that's sort of fat distribution around the central part of the body. It also has some structural
affects on our bodies. So it stimulates the process of anabolism, and what that means is
taking smaller components in our bodies, like proteins, and building them up to bigger components or aggregates of those
components, like muscles. So muscles are basically a
big aggregate of proteins. That e.g. just means for example. Testosterone also stimulates bone growth. So it'll make your bones
bigger in diameter and longer, but it also stimulates the
termination of bone growth once your bones can't grow anymore. So those are the major
secondary sex characteristics that testosterone stimulate. It affects your behavior,
increasing your sex drive, and has been thought to possibly cause higher levels of aggression. Testosterone can increase
the number of red blood cells that we have, and it does that
by stimulating our kidneys to produce another type of hormone called erythropoietin or EPO, and EPO's role is to cause the creation of more red blood cells. So that all sounds pretty awesome, right? Well, except for maybe the
possible link to aggression. But it turns out there's a
limit to the testosterone that you want floating
around in your blood at any given time. If you have too much, bad
things can start to happen. It's been theorized that the prostate has cells that are stimulated
by DHT or dihdryotestosterone. Do you remember that
metabolite of testosterone we talked about earlier? And so, the idea is that they grow bigger when there's too much DHT around and increases the risk of
developing prostate cancer. The jury's still out on that one, though, but one thing we do know is
that male-pattern baldness, that is, baldness on the top of the scalp, is actually promoted by
excess DHT in the blood. So this tells us that
we don't want too little or too much testosterone
traveling around in our blood and affecting our cells. So, how do we control how much
testosterone is in our body? Well, it turns out that
testosterone, to a large extent, self-regulates how much is produced. But how can it do that? It actually does that
through something called a feedback loop, and this
concept of the feedback loop is by bar how most hormones work. So again, a feedback loop is
a method of self-regulation. So an example of a feedback loop would be something like a thermostat. Let's say you set the
temperature in your room to a nice 25 degrees Celsius. So let's say it's 20
degrees in the room now. The thermostat will sense the temperature of the current air in the room and heat the room another five degrees, until it gets to 25 degrees. And once it's sensed that
25 degrees has been reached, it will turn off the thermostat. And testosterone in the body's
regulated in a similar way. There's a part of the brain
called the hypothalamus that acts similar to that thermostat. It's actually sometimes referred to as the body's thermostat,
because it regulates most of our feedback loops, and the testosterone
feedback loop is one of them. So the hypothalamus will sense
the amount of testosterone that's floating through your blood. If it's not enough testosterone, the hypothalamus will send a signal to another gland in the brain, called the anterior pituitary, and that actually just sits right underneath the hypothalamus, and then the anterior
pituitary sends more hormones to the testes that increases
their testosterone production. Conversely, if there's too
much testosterone in the blood, the hypothalamus will sense that, and it will stop sending signals
to the anterior pituitary, and then the anterior pituitary will stop sending signals to the testes. And so, when that happens, you actually get a
decrease in testosterone. So overall, this negative
feedback loop is used to control the amount of
testosterone in the blood, and that control of
blood testosterone levels is actually referred to as
testosterone homeostasis, homeostasis meaning to remain constant. And that's testosterone.