Main content
MCAT
Course: MCAT > Unit 7
Lesson 18: Reproductive system- Reproductive system questions
- Reproductive system questions 2
- Welcome to the reproductive system
- Anatomy of the male reproductive system
- Transport of sperm via erection and ejaculation
- Spermatogenesis
- Testosterone
- Basics of egg development
- The ovarian cycle
- Meet the placenta!
- Reproductive cycle graph - Follicular phase
- Reproductive cycle graph - Luteal phase
- Estrogen
- Maternal changes in pregnancy
- Labor (parturition)
- Breast anatomy and lactation
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Spermatogenesis
Discover the vital role of the testes in the male reproductive system. Learn about the production of sperm and testosterone, the journey of sperm through the seminiferous tubules, and the process of spermatogenesis. Explore the importance of the sertoli and leydig cells, and the unique function of the epididymis. Created by Vishal Punwani.
Want to join the conversation?
- in the production of sperm, what is it that happens to determine if a man's sperm is good for reproduction or not? eg. "slow swimmers".(3 votes)
- That doesn't happen in spermatogenesis, But Arriving from the male reproductive system to the egg in the female's reproductive system is what indicates that the spermatozoa is good because a bunsh of them depart but few arrive safely those that endure the obstacles on the way, and then the egg chooses only one of them to fuse with itself and that would be the best of all spermatozoa. This is as far as i know, but you should look further into it.(6 votes)
- How do the 2º spermatocytes differentiate into spermatozoa ? (what happebds to the Golgi complex, mitochondria and centrioles ?)(3 votes)
- The golgi apparatus goes to the head of the sperm to form the acrosome. I think the mitochondria go towards the flagellum (tail) to produce energy (ATP) to aid with movement.(6 votes)
- Atyou say that the spermatocyte have 46 pairs of chromosomes and later divide in two spermatocytes with 23 pairs each. Since we as humans have 23 pairs in our genome, do the spermatocyte with 46 pairs actually have four of each chromosome or are there other chromosomes that doesn't get passed on? 5:55(5 votes)
- Because before meiosis, all the chromosomes need to replicate, which makes it double the number.(6 votes)
- When secondary meiosis happens and it creates two spermatids with only 23 single chromosomes, are those two sperm carrying identical genetic material?(3 votes)
- The chromosome pairs in the secondary spermatocyte would separate, which would mean that since we are undergoing meiosis and not mitosis, the 23 single chromosome pairs in in the spermatids would be different.(4 votes)
- Primary spermacytes actually have 2n chromosome number(3 votes)
- Yes,primary spermatocytes have 2n chromosome.These is because then are developed from male germ cell/spermatogonium having 2n chromosome through process of mitosis.(2 votes)
- Why the spermatogonium before undergoing meiosis 1 is called primary spermatocyte? As compared to oogenesis when the oogonium undergo meiosis 1 then they are called primary oocytes not before undergoing meiosis 1!(3 votes)
- At"further reduced chromosome copy number by half" and at 8:59"23 single copies" are not clear. 9:11
should meiosis 2 reduce already reduced 23 chromosomes?(2 votes) - so is meiosis when you divide multiple or more than two things ? and mitosis when something divide into two ?(2 votes)
- Kind of, the end product of meiosis is 4 genetically different haploids (23 chromosomes in humans) while the end product of mitosis is 2 genetically identical diploid (46 chromosomes in humans)(3 votes)
- so is there a limit to the number of sperms that man produces (i mean like eggs in female) and what is it?(2 votes)
- No; the testes are sperm factories. They will continue producing sperm indefinitely, although the count of sperm produced declines with age.(2 votes)
- AtVishal says that the testes make the majority of major male hormone testosterone. So are reproductive hormones made in any other part of the body ? 0:20
Also are there any other kind of male reproductive hormones other than testosterone?
THANKS(2 votes)- For the first question, yes there are sex hormones that are secreted from the adrenal glands (the cortex to be specific).
And for the second question, yes there are other kinds of male sex hormones that are collectively called "Androgens", or the musclinization causers, they include testosterone and androsterone.
If I've provided any mistaken information please let me know. I hope that was helpful.(2 votes)
Video transcript
- [Voiceover] We're going to talk about a pair of really important structures in the male reproductive
system called the testes. They sit inside the scrotum, and have two really primary functions. First, they produce the
male's contribution to a baby, which is his sperm. Second, they make the majority of the major male hormone, testosterone, but we'll really only discuss the sperm production role for now. So let's look inside the
testes and see what we find. So inside we find this really convoluted set of tubes in light blue here. These are called seminiferous tubules. The sperm are actually
made inside these tubules, and the testosterone is made
by cells called leydig cells that hang out on the
outside of these tubules. Anyway, the sperm are made
in the seminiferous tubules, and they travel out of the tubules and into the epididymis to mature and get ready to head
off, via ejaculation, to try and find an egg to fertilize. So to appreciate the
process of sperm production and how it all happens, we need to take a look inside
the seminiferous tubules. So let's take a look inside. This is a cross section of the tubule, sort of magnified so we can see
the components of it better. So this light blue
layer along the top here is a muscle like layer
that helps to propel sperm through the tubules and
into the epididymis, so it does this via, sort
of, coordinated muscular contractions that move in a
wave like fashion down the tubes The coordinated movement
pattern is called peristalsis, so if you think about
squeezing a tube of toothpaste from the bottom to the top to get a little bit of toothpaste out, peristalsis is pretty similar to that. So, anyway, after leaving
the seminiferous tubules the sperm, sort of, drain
out into this network of tubes here called the rate testis, then after the rate testis
they drain to the epididymis where they hang out to mature
and be stored for a while. So that's just a little bit on peristalsis and the movement of the
sperm through the tubes, but back to the cross section here. These radially arranged
cells in a bit darker blue, they're called sertoli cells, and just so you're aware, sertoli cells are packed
into these tubules in a way more crowded fashion. This is just an easy,
sort of, schematic way of looking at them and seeing
how they do what they do, which you'll soon see. So the general idea is that sperm develop between two sertoli cells, and they sort of develop
as the shuffle down between the two cells
toward the lumen here. By the way, a lumen is a hole down the center of a hollowed tube, so, for example, the
lumen of a garden hose is the part where the
water travels through. So let's get to the details
of how this all happens. We'll zoom in here on,
say, this part here, but we really could pick anywhere along these tubes because
it's all the same process, and let's say this here is a sertoli cell, and there's a sertoli
cell on the other side, but I'll just put S to
designate sertoli cell, and that light blue bit up top
is that smooth muscle layer that does peristalsis, so this purple cell here, what is that? That's called a spermatiogonium, and you have these spermatogonium between each set of
neighboring sertoli cells. They're sort of the precursor
to the mature form of sperm. They're the actual germ cell
where all our sperm comes from, so they go through different
developmental stages in a process called differentiation until they form what we know as sperm. So, immediately, you might think, "Well, what if these
spermatogonium are differentiating "down the pathway to become mature sperm, "what happens when they all do that? "Won't we run out of spermatogonium?" And that's a great thought, so how that problem is solved
is that when spermatogonium under go mitosis and split
into two spermatogonium, one will differentiate into
the next precursor sperm cell down the pathway of making mature sperm, and the other one will just
keep being a spermatogonium, so it'll give rise to another two cells, and one will differentiate, and one will keep being a
spermatogonium, and so on. So let's officially start here. Our spermatogonium will
divide via a mitosis, and one of the daughter
cells will differentiate into a primary spermatocyte. We'll just draw that one. Remember, the other is
going to revert back to being a germ cell, a spermatogonium, so this primary spermatocyte here has to cross over this linkage between the two sertoli cells, that's called a tight junction, and the tight junction effectively
creates two compartments. One up here, and that's
called the basal compartment. Basal because it's closest to the base or the basal region of the sertoli cells, and one compartment down here
called the lumenal compartment because it includes that
lumen we mentioned earlier. So because they're
really tightly separated by the tight junction here, these two different compartments have really different
chemical environments. They have different signaling molecules and proteins floating around in them, and that helps each compartment to bring on a different
stage of development for our developing sperm. Anyway, back to the tight junction. It sort of senses the primary spermatocyte coming close and it opens up, and the primary spermatocyte moves through and starts to enlarge by
increasing it's cytoplasm because it's actually
getting ready to divide and differentiate into two
secondary spermatocytes, and then that tight junction actually reforms super quickly behind it, like before the primary
spermatocyte is even fully through, and the idea behind that quick reformation of the tight junction is so
that you don't get much leakage from one compartment into the other, so that their environments can stay pretty different to each other. So back to our primary spermatocyte. It's passed through
the tight junction now, and it hasn't really changed except enlarging a little bit by
gaining more cytoplasm, so now it divides and differentiates into two secondary spermatocytes, but there's actually a
pretty big difference between the division that
the spermatogonium did to produce the primary spermatocyte and the new spermatogonium, that division was by mitosis, and this division where
the primary spermatocyte divides to create two
secondary spermatocytes. This is called meiosis. So they sound similar, mitosis, meiosis, but in mitosis you enlarge and split into two identical daughter cells that are genetically identical
to the original cell, but in meiosis you give
each of your daughter cells half of your chromosomes. So each primary spermatocyte
has 23 pairs of chromosomes, and each chromosome is a
pair of sister chromotids, and you probably notice
that these chromosomes have all undergone crossing over. They're a mixture of pink and blue from homologous chromosomes
from mom and dad, so just a reminder, that
yes primary spermatocytes were created from
spermatogonium by mitosis, but at a certain point,
the primary spermatoctyes decide to undergo meiosis. So prophase one starts in
these primary spermatocytes and crossing over happens in
these primary spermatocytes, and then metaphase one, and
anaphase one, and telophase one, and cytokinesis happen
to split our primary into two secondary spermatocytes. So when the primary
spermatocytes differentiate into secondary spermatocytes, they give each of their daughter cells a half of their chromosomes, so now each secondary has 23 chromosomes, still with a sister chromatid each. So now what happens? Well, we have our secondary spermatocytes. Each having 23 chromosomes in sister chromotid configuration, and now they need to differentiate. So they do, they differentaite into spermatids, which are are starting to look something like sperm, and two spermatids per secondary
spermatocyte are created. So there would be four here, but I've only drawn in the spermatids from one of the secondaries. I've only drawn two in, and notice that these spermatids, they're a little bit more
embedded into the sertoli cells. They get a lot of nutrients that way. Importantly, though,
when they differentiate from secondary
spermatocytes to spermatids, the second half of meiosis happens, what's called meiosis two. So meiosis one was completed earlier when we went from primary spermatocytes to secondary spermatocytes, and by undergoing the
second step of meiosis here, we further reduce the
chromosome copy number by half. So instead of 23 chromosomes
each with a sister chromotid, these newly made spermatids each have 23 single copies of each chromosome. And we need sperm to have only
one copy of each chromosome because after a sperm
fertilizes a female's egg, the eggs end up with also
only copy of each chromosome, so when their nuclei fuse, they create a set of twenty
three pairs of chromosomes. One set from the father's sperm and one set from the mother's egg, and that's what we want. So now for the last step that happens in between the sertoli cells. The spermatids differentiate
into spermatozoa. One spermatozoa per spermatid in a process called sperspermiogenesis, and each spermatozoa has a
single copy of each chromosome. So notice that one primary spermatocyte ends up giving rise to four sperm. Remember, what you see here
should actually be doubled. So you should see two more spermatozoa because I've only shown the products of one of the secondary spermatocytes. So down here at the
newly minted sperm stage, we're not exactly done yet. The immature sperm still has
to travel to the epididymitis to mature into sperm
that are fully capable of carrying out fertilization, so in the epididymitis they
gain more mitochondria, and they gain longer flagella, and at that point they're
ready to start their journey in hopes of fertilizing an egg.