Main content
MCAT
Course: MCAT > Unit 9
Lesson 11: CarbohydratesKeto-enol tautomerization (by Jay)
Mechanisms for acid and base catalyzed keto-enol tautomerization. Created by Jay.
Want to join the conversation?
- Why does the H2O act as a base, rather than a nucleophile? 3:17(8 votes)
- It just so happens that all Lewis Bases are Nucleophiles. A lewis base is any molecule that donates electrons, normally from a lone pair, to another molecules empty orbital. They are "searching for a nucleus for the electrons to go so are nucleophilic. This other molecule is called an electrophile and is a Lewis Acid. They are "searching" for electrons so are electrophilic. So to cut a long story short, a base is a nucleophile and a acid is a electrophile.(8 votes)
- This may be a silly question but does the "keto" term apply to both ketones and aldehydes or only ketones?(5 votes)
- It's not a silly question and, yes, the C=O group is often called a keto group whether it is part of an aldehyde or ketone.(18 votes)
- What reaction takes place faster or is "easier" to do, acid-catalyzed or base-catalyzed tautomerization? For example, would a chemist in a lab choose an acidic solution or a basic solution if they wanted to make the enol form in greater concentration than it normally is for a given molecule?(6 votes)
- Depends on the purpose of the reaction. Generally speaking (from my own experience in a synthesis lab) the base catalyzed tautomerization is more practical. The enolate anion (a strong nucleophile) allows us to insert various R groups at the alpha position. Furthermore, a very common reaction in organic synthesis is the formation of a silyl enol ether. Silyl enol ethers are formed using a strong base and TMSCl. The silyl enol ethers are intermediates to many reactions in organic synthesis (Mukaiyama-Michael addition, Saegusa–Ito oxidation, haloketone formation, etc). Hope that helps.(5 votes)
- is it always necessary that in enol form the double bond has to be always closer to the alcohol group(3 votes)
- Yes, definitely....then only the oxygen atom can donate electrons and form /share bonds with the other hydrogen bonds...(5 votes)
- In the base catalyzed reaction, why doesn't -OH do a nucleophilic attack the carbonyl carbon instead of the alpha hydrogen?(4 votes)
- The hydrogens on the alpha carbon are more acidic, so OH is more likely to pull off that proton rather than go for a nucleophilic attack on the carbonyl carbon.(2 votes)
- how to number the alpha carbon in a ketone, since it has two R group? If i change a Keto to an Enol, while the pi bond be in the longer strand or the shorter strand?(2 votes)
- alpha carbons simply means the adjacent or first carbon next to a functional group. (side note: there's also beta, gamma, delta.. etc carbons which correspond to the 2nd, 3rd, 4th, carbon away from the functional group).
In the case of ketone this just means it has 2 alpha carbons. Not sure what you mean by 'shorter or longer strand', but you're alpha carbon needs to have the hydrogen to undergo ->enol tautomer.
If you're trying to get crazier than that like "what if both alpha carbons have hydrogens, which one will form the pi bond?" - I dunno, need more study lol. but I would guess from that point you would need to factor in which alpha carbon would be possible to react with. So steric hindrance? also resonance, stability, etc..(3 votes)
- Great video! One question: at, he points out the alpha carbon in the ring structure. This carbon would have two H atoms bonded to it, which would make it achiral, is that correct? I think my misunderstanding may be based on whether chirality is a prerequisite for the reaction here...Thanks for any help! 10:31(1 vote)
- Chirality is not a prerequisite for keto-enol tautomerism.
All you need is an α-hydrogen.(5 votes)
- This may be a silly question but why inin first case keto form is more favoured but in the second one enol is more ? 10:31(2 votes)
- How do I identify the alpha carbon? For example in halyde compounds which contain more than one halogen atom?(2 votes)
- You look for the functional group of the molecule (eg. aldehyde, ketone group etc.) and then find the carbon right next to that (excluding the carbon of the functional group)(0 votes)
- Why attacking the alpha's hydrogen ?(1 vote)
- Because doing so generates a resonance-stabilized enolate ion.(2 votes)
Video transcript
Voiceover: If you start
with an aldehyde or a ketone and add a catalytic
amount of acid or base, you'll find the aldehyde or ketone is going to be in equilibrium with this product over here on the right which we call an enol. The name enol comes from the fact that we have a double
bond in the molecule, so that's where the EN part comes in, and we also have an alcohol. You can see the OH over here so that's where the OL comes in. This is the enol form and then over here this is the keto form. The keto form and the enol form, and these are different molecules. They're isomers of each other so we call them tautomers and they're in equilibrium
with each other. They're not different
resonance structures. Let's see if we can analyze
our aldehyde or ketone to see how to form our enol. If we look at the carbon that's next to the carbonyl carbon we call this the alpha carbon, and there are two hydrogens attached to the alpha carbon in this case. Let me go ahead and draw those in. Those are called the alpha protons. If we think about transferring one of those alpha protons from the alpha carbon to the oxygen, even though it's most
likely not the same proton, it just helps to think about doing that. We can also think about
moving the double bond. Over here on the left, the double bond is between
the carbon and the oxygen and we're moving that
double bond over here between the two carbons. Transferring one alpha proton and shifting your double bond converts the keto form into the enol form. Then, we also have a hydrogen, right? Over here, we still have a
hydrogen left on this carbon, so let me go ahead and
draw in that hydrogen. That's this hydrogen in blue here. That's how to think about converting a keto
tautomer into an enol one. Let's look at the acid-catalyzed
mechanism for this. If we start with our aldehyde or ketone and add H three O plus, the first thing that's gonna happen is protonation of our carbonyl and so a lone pair of electrons picks up this proton like that. We can go ahead and draw that. We would protonate our carbonyl so now our oxygen would have
a plus one formal charge. Let me just go ahead and
draw in those electrons here. Let's say we started with an aldehyde. We'll make this an H. The lone pair of electrons on our oxygen picked up a proton, like that. We can draw a resonance
structure for this. We can move these electrons
off onto our oxygen so let's go ahead and show
a resonance structure. We would have our R group, all right, and now we would have our oxygen with two lone pairs of electrons. Let me go ahead and draw in those two lone pairs of
electrons on our oxygen. Then we took a bond
away from carbon, right? We took a bond away from this carbon so this carbon right here. Plus one formal charge on that carbon. Then we could show the
movement of those electrons. These electrons right here I'm saying moving out onto
the oxygen, like that. This is our intermediate here. All right. We know that our alpha
carbon has two protons on it. Once again, let's find our alpha carbon. Here it is right here. We know we have two
protons attached to it, two alpha protons, if you will. In the next step of our mechanism we're gonna get a molecule
of water acting as a base. Let me go ahead and show
a molecule of water here. The water's gonna take one
of those alpha protons. Let's say once again, it
takes this alpha proton and leave these electrons behind. They're gonna move in here to form our double bond. Let's go ahead and draw our product. We would have our R group here and now we would have a double bond formed
between our two carbons and then we would have our oxygen, and then we would have two lone pairs of electrons on our oxygen. We would have our hydrogen, and then we would have
another hydrogen right here. Let's go ahead and follow
some of those electrons. Let's go ahead and make
these electrons in here blue. These electrons are
gonna move in, in here. It doesn't really matter
which one you say it is, let's just say it's that
one to form our double bond, and then, the electrons in red moved off onto this oxygen, and then we said that these
electrons were in magenta. You can see that we have
formed our enol here. This is our enol and then we started with
our keto form like that. Keto-enol tautomerization. Let's look at the base catalyzed version. Once again, we start with
our aldehyde or ketone but this time we're going to add a base. Something like hydroxide. We find our alpha carbon. Here's our alpha carbon. Once again, with two alpha protons. I'm gonna go ahead and draw
in those two protons here. The base is gonna take
one of those protons. Let's say it takes this
one over here on the right. That leaves these electrons
behind on this carbon. Let's go ahead and draw
the resulting anion here. We would have our carbonyl like that. Once again let's say we
started with an aldehyde and then we would have
a lone pair of electrons on this carbon, the carbon in red here. Let me go ahead and
identify those electrons so these electrons in here in magenta have moved off onto this carbon like that, which gives that carbon a
negative one formal charge. It's a carbanion. There's still a hydrogen
attached to that carbon in red. This hydrogen right here
is still attached to it, I'm just not drawing it in so we can see a little bit better. All right. This is one form of the
anion that we could have. We could draw a resonance
structure to show the other form, so if we moved these
electrons in magenta into here and pushed these electrons
off onto this oxygen. Let's draw the resonance structure. We would have our R group here, we would have a double bond, and then our oxygen would have three lone pairs of electrons giving it a negative one formal charge, and then we would have
our hydrogen over here. The electrons in magenta moved in here to form our pi bond and then we can say that
these electrons in here moved off onto our oxygen. We could go ahead and show that. Let me just go ahead and put
the other bracket on here. We have two forms of this anion. This is called the enolate anion. This is the enolate anion. This is going to be extremely important in future reactions. You can see the enolate anion has two resonance structures. One where we're showing the
negative charge on the carbon. That would be this one right over here. The negative charge on the carbons. This is our carbanion form, so carbanion. Then we also have a resonance structure where the negative charge is on the oxygen so we could call this oxyanion. If you think about which
one contributes more to the overall hybrid, oxygen is more electronegative than carbon and so, it's better able to have a negative one formal charge on it. The oxyanion contributes more
to the resonance hybrids. All right. Let's think about the
last step in our mechanism to form our enol. If we think about our oxyanion, all we'd have to do is
protonate that oxygen here. We could just go ahead
and draw a water molecule. We have a water molecule. This time water's going
to function as an acid it's going to donate a proton. Let say these electrons in blue take this proton, leave
these electrons behind, and so from our oxyanion, we can go ahead and draw our enol product. We have our R group here. We would have our double bond, we would have our oxygen, all right. Now protonated like this
to form our enol product. Let me just go ahead and
show those electrons in blue. Picked up a proton here to form our enol. That's how to get there
using base-catalyze. Once again, we will talk much more about the enolate anion
in future videos here. Let's look at a situation where the alpha carbon is a chiral center. Let's look at this right here. Here's our alpha carbon. Let's just say it's a chiral center. If R and R double prime are
different from each other we would have four different things attached to this carbon. The alpha carbon here
is SP three hybridized with tetrahedral geometry. Let's say it's either the
R or the S enantiomer. It doesn't really matter which one. You can see now we have
only one alpha proton. Only one alpha proton but because there is an alpha proton we can form an enol. In either an acid or
base-catalyzed mechanism we could think about
the proton here in red, you could think about
transferring one to this oxygen and moving your double bond, and then we form our enol. Here is our enol. Now let's look and see what happened to the carbon in red right here. On the left, the alpha carbon was SP three hybridized with tetrahedral geometry. Now, this carbon is SP two hybridized with trigonal planar geometry. Whatever stereochemical information we had over here on the left, whether it was the R or the S enantiomer, it's been lost now that
we've formed the enol. The enol is achiral,
it's flat, it's planar. When we reform the keto form, so one of the possibilities is to form the enantiomer
that we started with but the other possibility is
to form the other enantiomer. You can see that's what I've shown here. I've shown the hydrogen
now going away from us and our R double prime
group coming out at us. This is the enantiomer. Because we formed the enol we can get a mixture of enantiomers. Enolization can lead to racemization. We can get a mixture of enantiomers and if we wait long enough, we can get an equal mixture of these guys. This one and this one
would be in equilibrium with our enol form. That's something to think about if you have a chiral center
at your alpha carbon. Let's look at two quick examples of keto and enol forms. Over here on the left
we have cyclohexanone and on the right would be
the enol version of it. You could think about one of these as being your alpha carbon, right, and you could move these electrons in here and push those electrons off. You could see that would
give you this enol form. It turns out that the
keto form is favored. The equilibrium is
actually far to the left favoring formation of the keto form. Even under just normal conditions, so not acid or base-catalyzed. There's only a trace
amount of the enol presence however, there are some cases where the enol is extra-stabilized and that's the case for
this example down here. We have the keto form and
we have the enol form. Once again, you could think about these electrons moving in here, pushing those electrons off giving you your enol form. This is a specially-stabilized
enol, right? This is phenol right here. We know that phenol has an aromatic ring. The formation of the enol
form is extra-stabilize because of this aromatic ring. This time the equilibrium
is actually to the right and much more of it is in the enol form than in the keto form. In this case, we have some
special stabilization.