Main content
MCAT
Course: MCAT > Unit 6
Lesson 9: Embryology- Embryology questions
- Embryology questions 2
- Fertilization terminology: gametes, zygotes, haploid, diploid
- Egg meets sperm
- Egg, sperm, and fertilization
- Human embryogenesis
- Early embryogenesis - Cleavage, blastulation, gastrulation, and neurulation
- Implantation
- Gestation
- Germ layer derivatives
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Egg meets sperm
Although it is happening every hour of every day, all over the world, the story of egg meeting sperm is still a tale worth telling. Millions of candidates set off on a long and perilous journey with a single target at the end, and if the candidates reach their target, something completely unique is created. But before we get to the end, let’s take a closer look at the journey.
The Main Characters
Zoom in on the egg (top) and sperm (bottom):
Hundreds of millions of sperm vie for a single egg cell. The sperm cells are streamlined in design for this purpose: a long tail to help them move, lots of mitochondria to power that movement, genetic information to pass on, and enzymatic proteins to get into the egg cell. The proteins are stored in a cap at the front of the sperm known as an acrosome - this is the part that first contacts the egg. The tail is called a flagellum, and it uses the energy made by the mitochondria to move the sperm forward. Flagella use a lot of energy, so they’re kept dormant until sperm enter the vagina. Sperm are haploid; they contain one set of 23 chromosomes. They are created by the cellular division process known as meiosis, which creates 4 sperm from a single germ cell. They’re also very small, only about 50μm long. Sperm are ejaculated in semen, a basic fluid with a pH of about 7.4.
The sperm's target is the egg. Since it is so much bigger than sperm, the egg is the source of cytosol and organelles, particularly mitochondria, for the future zygote. Unlike sperm, the egg has not completed meiosis - it’s stuck in the Metaphase II stage of division. This means that the egg is haploid but with sister chromatids still attached to each other. Also unlike sperm, the meiotic division to create eggs, oogenesis, only makes one viable egg. The egg is covered in a thick outer coating known as the zona pellucida, a layer of carbohydrate-covered proteins that surrounds the plasma membrane. The zona pellucida helps protect the egg and is responsible for mediating the initial meeting of sperm and egg. Cortical granules filled with enzymes line the inside of the cell membrane and help make sure that only one sperm can fertilize the egg.
The setting
Egg and sperm travel in opposite directions to meet in (most often) the fallopian tubes. During ovulation, ovaries release an egg into one of the fallopian tubes, and the egg proceeds down the tube toward the uterus, which is being prepared for possible implantation. Part of this preparation involves elevated levels of estrogen and luteinizing hormone (LH). LH triggers the ovaries to release the egg, while higher blood estrogen levels stimulate the vaginal membrane to secrete glycogen, which is then metabolized to lactate. This lowers vaginal pH (to as low as 3.8), creating an acidic environment hostile to pathogens (like the ones that cause sexually transmitted infections). However, this environment can also be toxic to sperm, though the semen (a basic fluid) can buffer the vaginal acidity to preserve sperm cells. As the semen mixes with the vaginal secretions, the pH settles at a point that is not harmful for sperm, and this new environment is the trigger to activate sperm flagella and increase sperms’ motility.
Only about 1 in 1 million sperm that are ejaculated into the vagina will reach the site of fertilization. Estrogen also relaxes the cervix, causes cervical mucus to become watery and more alkaline, and stimulates uterine contractions – all of which help sperm penetrate and navigate the female reproductive system. Relaxing the cervix allows sperm to pass from the vagina into the uterus and reduces a potential physical barrier. Cervical mucus may prevent sperm from passing into the uterus, but during ovulation when the egg is released from the ovaries, the mucus gets thinner and lower in pH. These changes make the mucus a great transport medium for the sperm, and help the sperm continue traveling. The uterine contractions actually help to push sperm toward the correct fallopian tube (the one with the egg), and recent studies have suggested that these contractions are more responsible for sperm movement than the sperm’s own propulsion mechanisms!
As we can see, the progress of sperm is really influenced by where in the menstrual cycle the female is. The closer to ovulation, the easier it is for sperm to pass. Scientists think this may be to conserve energy and resources - if the female isn’t ovulating, then there’s no target for the sperm, so it makes more sense to focus on protection against pathogens. The vagina and uterus are very susceptible to infection, so the body has to balance on a fine line between protecting these areas and allowing sperm to come through.
The Action
Let’s assume that despite the perilous journey, some amount of sperm cells have indeed found the egg and are ready to begin their approach. It’s not smooth sailing just yet – there are still physical and chemical barriers to overcome. As the sperm approach the egg, they bind to the zona pellucida in a process known as sperm binding. This triggers the acrosome reaction, in which the enzymes of the acrosome are freed. These enzymes then begin to digest the zona pellucida and allow the sperm to tunnel toward the egg’s plasma membrane. When the sperm cell finally reaches the egg cell, the plasma membranes of the two cells fuse together and the sperm releases its genetic material into the egg. At this point, fertilization has occurred, but we’re not done yet!
Fusion also triggers the cortical reaction. When the sperm and egg fuse it triggers a release of calcium ions, which cause the cortical granules inside the egg to fuse with the plasma membrane. As they fuse, these granules release their contents outside of the cell, toward the remains of the zona pellucida. The enzymes of the cortical granules further digest the zona pellucida, making it unable to bind more sperm, while other molecules found in the granules create a new protective layer around the fertilized egg. By creating a new barrier and destroying the initial interface between sperm and egg, the cortical reaction prevents polyspermy, or the fertilization of a single egg by multiple sperm. It’s like entering a hidden temple, but on the way, you set off hidden booby traps that make it impossible to ever enter again. Other sperm reaching the egg now are just shunted away.
Consider the following:
Copper intrauterine devices, or IUDs take advantage of sperm cell properties to prevent fertilization. The copper released by these contraceptives is a natural spermicide, and ovicide, though it more strongly affects sperm. Studies have shown that copper ions reduce sperm’s motility, ability to trigger the acrosomal reaction, and general viability. Though the devices release less copper than what could be found in our diets, the copper build-up in the mucous lining of the cervix and uterine is enough to halt the movement of sperm. IUDs in general also trigger a mild inflammatory reaction that brings in immune cells that make it even harder for the sperm to complete their journey. Recently, some studies have even found that copper IUDs can affect the way the uterus contracts, sending sperm in the wrong direction! Thus, IUDs prevent the sperm and egg from ever meeting - inhibiting fertilization.
Want to join the conversation?
- "Cervical mucus may prevent sperm from passing into the uterus, but during ovulation when the egg is released from the ovaries, the mucus gets thinner and lower in pH."
Shouldn't that be higher in pH, more alkaline-like?(13 votes)- The vagina has a very low pH (acidic) of about 3-4, and sperm typically will not survive in the vagina for more than 1-2 hours. The cervical mucus has a variable pH that depends on the hormonal environment. The hormonal environment is correlated to the time of the menstrual cycle. Cervical mucus is alkaline (basic) just prior to the time of ovulation when the cervical glands producing the mucus reacts to the predominance of circulating estrogen to make mucus that is more abundant, clearer, more elastic (stretchy), less cellular, more watery (less thick), higher in pH, and composed of strands that are aligned to allow greater sperm penetration. If the cervical mucus is "friendly", sperm can live in the mucus for at least 2 days.
Hope this Helps
Credit to: Eric Daiter, M.D http://www.drdaiter.com/37.html(6 votes)
- If only one female egg is released in each menstrual cycle, how can non-identical twins be formed? From my understanding, non-identical twins are the result of two sperms getting into two different female eggs.(4 votes)
- https://www.khanacademy.org/science/health-and-medicine/human-anatomy-and-physiology/reproductive-system-introduction/v/the-ovarian-cycle
here it says actually around 20 eggs are released, but only one becomes the "dominant" egg that actually survives and goes on into the fallopian tube.(3 votes)
- Why is the Egg cell so much bigger than the sperm cell?(4 votes)
- The oocyte has all the cytoplasm required for cell function, and enough for multiple rounds of cleavage. The sperm's role is to deliver the DNA payload to the oocyte, any extra cytoplasm is a waste, and a liability when competing with millions of other sperm to reach the oocyte first, which is why most of it is shed during the maturation phase of spermiogenesis.(3 votes)
- Does the ovary release the egg into the abdominal cavity or the fallopian tube? I am getting mixed information from this page and a Kaplan book.(2 votes)
- Technically, yes. The ovary and fallopian tube do not form a continuous structure, so in a sense the egg is released into the abdominal cavity. But the fallopian tube has finger like projections called fimbriae that sweep the egg into the tube. In practice, the egg almost always enters the fallopian tube. In very rare cases, the sperm can actually fertilize an egg that does not enter the fallopian tube. This type of ectopic pregnancy is called an abdominal pregnancy.(4 votes)
- what happens when more than one sperm gets into the egg(3 votes)
- Good question!
Polyspermy (fertilization by more than one sperm) in animals (including humans) typically results in the embryo dying.
This is because the resulting zygote has three sets of chromosomes and three sets of centrioles, which messes up cell division.
Two sources to learn more:
•http://www.devbio.biology.gatech.edu/model-organisms-for-developmental-biology/sea-urchin-2/fertilization-avoiding-polyspermy/
•http://biology.kenyon.edu/courses/biol114/Chap13/Chapter_13B.html
Does that help?(2 votes)
- "Estrogen also relaxes the cervix, causes cervical mucus to become watery and more alkaline" but later " but during ovulation when the egg is released from the ovaries, the mucus gets thinner and lower in pH", how can those two mechanism( increase pH and decrease pH of the cervix mucus) can happen at the same time of the ovulation(3 votes)
- Amongst so many different players, how does the sperm recognize the egg? How does the sperm "know" that what it is in contact with is the egg, and not some other component?(2 votes)
- In the molecular world nothing actually "knows", it's all molecular interaction based. The Acrosome binds with the Zona Pellucida (a glyco-protein/carbohydrate-protein rich area). These surface proteins, recall that most surface proteins deal in cell-to-cell signalling or recognition, are bound by the sperm triggering a conformational change releasing acrosome enzymes that degrade the Zona Pellucida. Then the egg and sperm membrane fuse and genetic contents are released inside the cell. This triggers mass calcium ion release (booby trap activated) and now the cortical vesicles bind the membrane, and via exocytosis, release enzymes that degrade the remaining zona pellucida. Now there is no where left for any other sperm cells to bind, or rather no more binding sites.(2 votes)
- The Main Characters chart says that each ejaculation contains 250-280 million sperm. However, after multiple ejaculations (within, say, 10 minutes), does the decreased amount of semen result from, or cause, a decrease in the number of sperm?(2 votes)
- I noticed that on the picture of fertilization, that the egg is still in the fallopian tube. Wouldn't that mean that it's an ectopic pregnancy?(0 votes)
- Lorna, fertilization always occurs in the fallopian tube. Once the egg is fertilized it travels the fallopian tube and in several days to a week implants into the uterus. An ectopic pregnancy happens when for some reason the egg is not able to travel to the fallopian tube and gets stuck in the fallopian tube. I hope that helps! :)(4 votes)
- It is mentioned that only one sperm is allowed to fertilized the egg. In that case, only one zygote is formed, thereby one baby. So, how are twins or triplets born?(1 vote)
- identical twins occur when a single fertilized egg splits into two separate eggs; false twins occur when more than one egg cell is realesed and both are fertilezed with 1 sperm cell;
one egg cell being fertilized by more than 1 sperm cells usually results in inviability(2 votes)