Current time:0:00Total duration:9:45
0 energy points

GMAT: Data sufficiency 34

Video transcript
We're on problem 135. I just did some pilates, so I'm slightly out of breath. If x is less than 0, is y greater than 0? All right, statement number 1, x/y is less than 0. So this is actually pretty useful. They're telling us that x is a negative number. So we have a negative here, and we're dividing it by some other number. They're telling us that the resulting number is still negative. So we have a negative divided by something is equal to a negative. So I think you learned when you learned negative numbers, if y was negative-- well, if y was 0 this would be undefined-- and if y is negative, if this was a negative, then when you divide a negative by a negative, you would have a positive. So y has to be a positive number, and it can't be 0. So this actually tells us. Statement 1 alone tells us that y is greater than 0 just based on the fact that you have a negative. It's just telling you that a negative divided by y is still negative. This whole thing is still negative. So y has to be a positive. Statement number 2 tells us y minus x is greater than 0. Let's see, add x to both sides. That tells us that y is greater than x. Well that's not enough. It says if x is 0, is y greater than 0? Maybe x is equal to minus 10 and y is equal to minus 9. So in this case, y wouldn't be greater than 0. Or maybe x is equal to minus 10 and y is equal to plus 9. Both of these would satisfy this condition. So we don't know. This doesn't tell us any information on whether y is greater than 0. So statement 1 alone us sufficient, and statement 2 doesn't do much for us. Problem 135, no, I already did 135, 136. They've drawn a circle there, so I guess I'll draw a circle as well. So that's the circle. They have a center like that and then it's like that. There's a right angle right here. They call this O. They call this X. They call this Z. Then they actually connect those two points. Then they call this, this point right here, that's Y. Let's see what they're asking. What is the circumference of the circle above with center O? So they just want to know the circumference. So if we could figure out a radius, then we know circumference is 2 pi times the radius, and we'd be all set. So let's see what information they give us. Statement number 1, the perimeter of triangle OXZ is 20 plus 10 square roots of 2. Now this is interesting. What do we know about this? Well we know that it's going to be an isosceles triangle. We know that if this length right here is X, that this length is also going to be X, because this is a circle. The radius is constant, and each of these sides are the radius of the circle. So those are both going to be x. What is this going to be? We just know from Pythagorean theorem, x squared plus x squared is going to be equal to that side squared. Let's call that c squared. So you get 2x squared is equal to c squared or c-- I'm calling this side right here c-- is equal to the square root of 2, x times the square root of 2. Whatever x is. So the perimeter of this entire triangle is going to be two x's, x plus x, so it's going to be 2x plus x square roots of 2. Statement 1 told us that this perimeter is equal to this right here. It's going to be equal to 20 plus 10 square roots of 2. Well I think you could do a little pattern matching here and solve for x. This is actually, even though it might not look completely like it, this is a linear equation. You can solve for it. Immediately that should be, oh, statement 1 is sufficient. But you can just do a little pattern matching and say, well, this works when x is equal to 10. So actually, we are able to figure out what x is equal to. Then as I said before, x is the radius of this circle. Then the circumference of the circle, which is what the whole question is about, that's 2 pi times the radius. Circumference is 2 pi times the radius. We just figured out the radius is 10. So it equals 20 pi. So statement 1 is sufficient. What does statement 2 do? Statement 2, the length of arc XYZ is 5 pi. XYZ is 5 pi. So they're telling us that this length is 5 pi. Well do we know what proportion that is of the entire circumference? Well sure, because they tell us that this is 90 degrees right here. This is 90 degrees of 360 degrees of a circle. So this, the arc length right here, is exactly going to be 1/4 of the circle. We know that because 90 degrees is 1/4 of 360. So 5 pi is going to be equal to 1/4 times the circumference. Or that the circumference is going to be equal to 20 pi. So each statement independently, statement 1 or statement 2, independently, is sufficient to answer this question, the circumference of the circle. 137, what is the value of a to the fourth minus b to the fourth? Immediately just even looking, one thing I'm tempted to do is rewrite this as a squared squared minus b squared squared. Because I just glanced at statement 1 and they had squares there. So I'm going to do that. Let me do different letters. You know that x squared minus y squared is equal to x plus y times x minus y. So here, x is a squared and y is b squared. So this is going to be equal to-- this is just the original, this is going to be equal to a to the squared-- a squared plus b squared times a squared minus b squared. Then we could simplified this again. So this is going to be equal to a squared plus b squared. We could simplify this as a plus b times a minus b. I think that's going to be helpful just glancing at the two statements that they gave us. So statement 1 tells us that a squared minus b squared is equal to 16. So that tells us that just this is equal to 16. That is equal to 16. That doesn't help me much because I don't know what a squared plus b squared is going to be. It just tells me the difference between these two squares. I don't know whether they're integers or anything. Statement 2 tells me that a plus b is equal to 8. Once again, that doesn't help me tremendously by itself. If I just know that a plus b is equal to 8, and I don't know what a minus b is, I don't know what all of this is. But when I use them together, this is interesting. Because we know that a plus b times a minus b is equal to a squared minus b squared. Well they just told us that a plus b is equal to 8. So a plus b is equal to 8. So 8 times a minus b is going to be equal to a squared minus b squared, which statement one told us was 16. So that actually tells us that a minus b is equal to 2. So now we have two equations with two unknowns, and we could solve for a and b. If we can solve for a and b, then we can definitely tell you what a to the fourth minus b to the fourth is. Just to show you that, let me do it. So let's see, a minus b is equal to 2. Add these equations. 2a is equal to 10. a is equal to 5. Then if a is equal to 5, b is equal to 3. So our original statement, a to the fourth is 5 to the fourth. 5 to the fourth minus 3 to the fourth. So whatever-- that's what? 625 minus 81, I think. It doesn't matter. You can figure it out. So both statements combined are sufficient to answer this question. See you in the next video.