Main content

### Math

## Common Core Math

# High School: Algebra: Seeing Structure in Expressions

Interpret parts of an expression, such as terms, factors, and coefficients.

- Analyzing structure with linear inequalities
- Analyzing structure word problem: pet store (1 of 2)
- Analyzing structure word problem: pet store (2 of 2)
- Factors & divisibility
- Intro to factors & divisibility
- Intro to factors & divisibility
- Polynomials intro
- Polynomials intro
- Reasoning about unknown variables
- Reasoning about unknown variables: divisibility
- Structure in rational expression
- The parts of polynomial expressions

Interpret complicated expressions by viewing one or more of their parts as a single entity.

- Analyzing structure word problem: pet store (1 of 2)
- Analyzing structure word problem: pet store (2 of 2)
- Interpreting expressions with multiple variables
- Interpreting expressions with multiple variables: Cylinder
- Interpreting expressions with multiple variables: Resistors
- Reasoning about unknown variables
- Reasoning about unknown variables: divisibility
- Structure in rational expression

Use the structure of an expression to identify ways to rewrite it.

- Difference of squares
- Difference of squares intro
- Difference of squares intro
- Equivalent forms of exponential expressions
- Evaluate expressions using structure
- Factor higher degree polynomials
- Factor polynomials using structure
- Factor polynomials: common factor
- Factor polynomials: quadratic methods
- Factor polynomials: quadratic methods (challenge)
- Factoring by common factor review
- Factoring by grouping
- Factoring difference of cubes
- Factoring difference of squares: analyzing factorization
- Factoring difference of squares: leading coefficient ≠ 1
- Factoring difference of squares: missing values
- Factoring difference of squares: shared factors
- Factoring difference of squares: two variables (example 2)
- Factoring higher degree polynomials
- Factoring higher-degree polynomials
- Factoring higher-degree polynomials: Common factor
- Factoring perfect squares
- Factoring perfect squares: missing values
- Factoring perfect squares: negative common factor
- Factoring perfect squares: shared factors
- Factoring polynomials by taking a common factor
- Factoring polynomials challenge
- Factoring polynomials: common binomial factor
- Factoring quadratics as (x+a)(x+b)
- Factoring quadratics in any form
- Factoring quadratics: common factor + grouping
- Factoring quadratics: Difference of squares
- Factoring quadratics: leading coefficient = 1
- Factoring quadratics: leading coefficient ≠ 1
- Factoring quadratics: negative common factor + grouping
- Factoring quadratics: Perfect squares
- Factoring sum of cubes
- Factoring two-variable quadratics
- Factoring two-variable quadratics: grouping
- Factoring two-variable quadratics: rearranging
- Factoring using the difference of squares pattern
- Factoring using the perfect square pattern
- Factoring with the distributive property
- Factorization with substitution
- Factorization with substitution
- Finding zeros of polynomials (1 of 2)
- Finding zeros of polynomials (2 of 2)
- Finding zeros of polynomials (example 2)
- GCF factoring introduction
- Identify quadratic patterns
- Identifying perfect square form
- Identifying quadratic patterns
- Intro to grouping
- Manipulate expressions using structure
- Manipulating expressions using structure
- Manipulating expressions using structure (example 2)
- Perfect square factorization intro
- Perfect squares
- Perfect squares intro
- Polynomial special products: difference of squares
- Polynomial special products: difference of squares
- Polynomial special products: perfect square
- Polynomial special products: perfect square
- Solve equations using structure
- Solving quadratics using structure
- Strategy in factoring quadratics (part 1 of 2)
- Strategy in factoring quadratics (part 2 of 2)
- Taking common factor from binomial
- Taking common factor from trinomial
- Taking common factor: area model
- Worked example: evaluating expressions using structure
- Worked example: evaluating expressions using structure (more examples)

Factor a quadratic expression to reveal the zeros of the function it defines.

- Compare features of functions
- Comparing features of quadratic functions
- Comparing functions: shared features
- Features of quadratic functions
- Features of quadratic functions: strategy
- Finding features of quadratic functions
- Finding the vertex of a parabola in standard form
- Forms & features of quadratic functions
- Graph parabolas in all forms
- Graph quadratics in standard form
- Graphing quadratics review
- Graphing quadratics: standard form
- Interpret quadratic models
- Interpret quadratic models: Factored form
- Quadratic equations word problem: box dimensions
- Quadratic equations word problem: triangle dimensions
- Quadratic word problems (standard form)
- Quadratics by factoring
- Quadratics by factoring (intro)
- Solve equations using structure
- Solving quadratics by factoring
- Solving quadratics by factoring
- Solving quadratics by factoring review
- Solving quadratics by factoring: leading coefficient ≠ 1
- Solving quadratics using structure
- Worked examples: Forms & features of quadratic functions

Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

- Compare features of functions
- Comparing maximum points of quadratic functions
- Completing the square
- Completing the square
- Completing the square (intermediate)
- Completing the square (intro)
- Completing the square review
- Features of quadratic functions
- Features of quadratic functions: strategy
- Finding features of quadratic functions
- Finding the vertex of a parabola in standard form
- Forms & features of quadratic functions
- Graph parabolas in all forms
- Graph quadratics in standard form
- Graphing quadratics review
- Graphing quadratics: standard form
- Interpret quadratic models
- Interpret quadratic models: Vertex form
- Quadratic word problem: mosquitoes
- Quadratic word problems (standard form)
- Solving quadratics by completing the square
- Solving quadratics by completing the square: no solution
- Vertex & axis of symmetry of a parabola
- Worked example: Completing the square (intro)
- Worked example: completing the square (leading coefficient ≠ 1)
- Worked example: Rewriting & solving equations by completing the square
- Worked example: Rewriting expressions by completing the square
- Worked examples: Forms & features of quadratic functions

Use the properties of exponents to transform expressions for exponential functions.

Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.

- Finite geometric series
- Finite geometric series formula
- Finite geometric series in sigma notation
- Finite geometric series word problem: mortgage
- Finite geometric series word problem: social media
- Finite geometric series word problems
- Geometric series intro
- Geometric series introduction
- Geometric series with sigma notation
- Geometric series word problems: hike
- Geometric series word problems: swing
- Worked example: finite geometric series (sigma notation)