# What is magnetic flux?

Learn what magnetic flux means and how to calculate it.

# What is magnetic flux?

Magnetic flux is a measurement of the total magnetic field which passes through a given area. It is a useful tool for helping describe the effects of the magnetic force on something occupying a given area. The measurement of magnetic flux is tied to the particular area chosen. We can choose to make the area any size we want and orient it in any way relative to the magnetic field.

If we use the field-line picture of a magnetic field then every field line passing through the given area contributes some magnetic flux. The angle at which the field line intersects the area is also important. A field line passing through at a glancing angle will only contribute a small component of the field to the magnetic flux. When calculating the magnetic flux we include only the

**component**of the magnetic field vector which is**normal**to our test area.If we choose a simple flat surface with area $A$ as our test area and there is an angle $\theta$ between the normal to the surface and a magnetic field vector (magnitude $B$) then the magnetic flux is,

In the case that the surface is perpendicular to the field then the angle is zero and the magnetic flux is simply $B A$. Figure 1 shows an example of a flat test area at two different angles to a magnetic field and the resulting magnetic flux.

**Exercise 1:**

If the blue surfaces shown in Figure 1 both have equal area and the angle $\theta$ is $25^\circ$, how much smaller is the flux through the area in Figure 1-left vs Figure 1-right?

# How do we measure magnetic flux?

The SI unit of magnetic flux is the Weber (named after German physicist and co-inventor of the telegraph Wilhelm Weber) and the unit has the symbol $\mathrm{Wb}$.

Because the magnetic flux is just a way of expressing the magnetic field in a given area, it can be measured with a

*magnetometer*in the same way as the magnetic field. For example, suppose a small magnetometer probe is moved around (without rotating) inside a $0.5~\mathrm{m^2}$ area near a large sheet of magnetic material and indicates a constant reading of $5~\mathrm{mT}$. The magnetic flux through the area is then $(5\cdot 10^{-3}~\mathrm{T})\cdot(0.5~\mathrm{m^2}) = 0.0025~\mathrm{Wb}$. In the event that the magnetic field reading changes with position, it would be necessary to find the average reading.A related term that you may come across is the

*magnetic flux density*. This is measured in $\mathrm{Wb/m^2}$. Because we are dividing flux by area we could also directly state the units of flux density in Tesla. In fact, the term magnetic flux density is often used synonymously with the magnitude of the magnetic field.**Exercise 2:**

Figure 2 shows a map of a non-uniform magnetic field measured near a sheet of magnetic material. If the green line represents a loop of wire, what is the magnetic flux through the loop?

# Why is this useful?

There are a couple of reasons why the description of magnetic flux can be more useful than that of a magnetic field directly.

- When a coil of wire is moved through a magnetic field a voltage is generated which depends on the magnetic flux through the area of the coil. This is described by
*Faraday's law*and is explored in our article on Faraday's law. Electric motors and generators apply Faraday's law to coils which rotate in a magnetic field as depicted in Figure 3. In this example the flux changes as the coil rotates. The description of magnetic flux allows engineers to easily calculate the voltage generated by an electric generator even when the magnetic field is complicated. - Although we have thus-far only concerned ourselves with magnetic flux measured for a simple flat test-area, we can make our test-area a surface of any shape we like. In-fact, we can use a
*closed surface*such as a sphere which encloses a region of interest. Closed surfaces are particularly interesting to physicists because of*Gauss's law for magnetism*. Because magnets always have two poles there is no possibility (as far as we know) that there is a magnetic monopole inside a closed surface. This means that the**net**magnetic flux through such a closed surface is always zero and therefore all the magnetic field lines going into the closed surface are exactly balanced by field lines coming**out**. This fact is useful for simplifying magnetic field problems.

# Magnetic flux around a current-carrying wire

**Exercise 1:**

Figure 4 shows a square loop of wire placed near a current carrying wire. Using the dimensions shown in the figure, find the magnetic flux through a coil. If you don't know how to calculate the magnetic field around a wire, review our article on the magnetic field. Hint: it may be useful to plot the magnetic field vs vertical distance from the wire.