Main content
Physics library
Course: Physics library > Unit 15
Lesson 3: Lenses- Convex lenses
- Convex lens examples
- Concave lenses
- Object image and focal distance relationship (proof of formula)
- Object image height and distance relationship
- Thin lens equation and problem solving
- Multiple lens systems
- Diopters, Aberration, and the Human Eye
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Diopters, Aberration, and the Human Eye
The video explores the concept of lens power in optics, explaining how smaller focal lengths result in more powerful lenses. It introduces the term 'diopters' as the unit for lens power. The video also discusses lens aberrations, including spherical and chromatic aberrations. Lastly, it explains how the human eye works and how corrective lenses help with vision problems like nearsightedness and farsightedness. Created by David SantoPietro.
Want to join the conversation?
- the thickness of lens is adjusted by ciliary muscles, but how about artificial lens(eg. placed in the eye after curing cataract)? is it also adjustable by the ciliary muscle?(17 votes)
- No. The artificial intraocular lens does not adjust. There is a lot of research trying to figure out how to make it adjust but the adjustable lenses so far (brand name Crystalens) doesn't adjust that well in my opinion. Most older adults have already lost their ability to adjust their natural lens anyway because the cataract stiffens the lens. (this is why people often need reading lenses after the age of 40 if they're not already myopic)(21 votes)
- Is a spherical aberration somehow rellated to the blur phenomenon which occurs while zooming in (by eg phone camera) too much on a pretty close element? You know, the moment when you're zooming in too much on something next to you and suddenly the image gets blured on the camera's screen.(7 votes)
- Yes, it's the same principle: some light either falls short of or falls beyond the focal point and leads to a blurry image!
Here's a page that explains it in the context of photography, if you're interested in learning more: https://www.bhphotovideo.com/explora/photography/tips-and-solutions/how-focus-works(5 votes)
- Convex lenses flip the image of the object so that the real image is rotated by 180 degrees (upside-down). Surely this would confuse the brain if convex-lens glasses are implemented because when the image is flipped somewhere along the optic nerve/brain after passing through both the cornea and the convex-lens glasses, the final image would be upside-down? Because first the image is flipped by the new convex-lens glasses (upside-down), then flipped again by the cornea (rightside-up), and then flipped again somewhere along the optic nerve so that the final image perceived by the brain is seen to be upside-down.(6 votes)
- The final image will still be upside down (before processing by the nervous system) because the image cast from the convex lens of glasses will create a virtual upright image that is farther away than the original object. This image is then inverted by our cornea/lens. For far sighted people it is easier to focus on an image farther away, so we use the virtual image of the first lens. Sorry if this isn't as well explained(2 votes)
- What determines where a focal point should be?(3 votes)
- When rays hit a convex mirror perpendicular to the mirror, they will all be bent towards a specific point. This specific point is called the focus.(1 vote)
- for astigmatism, what lens is needed to cure it(1 vote)
- a cylindrical lens. It has a different focal point in the horizontal direction than it does in the vertical direction(5 votes)
- i want to know how a concave lens is able to a solution of nearsightedness, and vice versa :?(3 votes)
- do chromatic and spherical aberration occur in our normal glasses? If they do, how are they corrected?(2 votes)
- I think it does occur, it's just not enough for us to notice.
It causes more problems for things like telescopes.(2 votes)
- how we are able to see far and near objects together like in the same direction and how convex lens in our eyes adjust itself to see both objects like why i see out of my room window i could see a street light as the nearer object and people walking on streets approx 50 m far ...both together(2 votes)
- Two distant light emitting objects become distinguishable when they satisfy Rayleigh' criteria. Due to the fact the our retina is basically an small hole, diffraction is observable, which blurs the light of observable objects. When that happens, if the objects are close enough, they appear like a single blob.
https://en.wikipedia.org/wiki/Angular_resolution
頑張って!(1 vote)
- So the glasses and the eye make up a multiple lens system as seen in the previous video?
thank you(2 votes) - Does spherical aberration affects all kinds of lenses or only convex ones as in the example? I am especially interested in plano-convex lenses. Thanks in advance. 4:33(2 votes)
Video transcript
- Here's something confusing. If I showed you two lenses that had two different focal lengths. One had a little focal length,
one had a big focal length, and asked you which one
of these is more powerful. Which lens has the higher power? You might confused about what power means, but if you had to pick,
I think a lot of people would probably pick this lens down here because we automatically think
bigger means more powerful, so a bigger focal length
means that it's more powerful. But that doesn't really
make a lot of sense, because let me show you
what happens if we send in parallel light rays into these lenses. Well, what do they do
with these light rays? We know what they do. They send light rays to the focal point because that's what convex lenses do. So it'll look something like this. So this light ray gets sent
there, that gets sent there, this one through here and
this one through here. That's what happens with that lens. What happens down here? This lens isn't going to
bend the light as much. If your focal length is
farther away, look at, it's bending the light, yes, but the light has not been impacted. It's original trajectory
has not been as influenced as the other lens up here with
the smaller focal lengths. So it turns out, lenses that
have a small focal length will actually have more a greater impact on the trajectory of the light than lenses do with a larger focal length. Imagine putting this focal length all the way out at infinity, well then it really wouldn't
affect the light at all. The light would just
continue straight through because the amount it's
bending is hardly anything. So this is a little weird,
but small focal length means a powerful lens. So rather than talk about focal length, optometrists and
ophthalmologists often talk about lens power, so the lens
power is just defined to be - this isn't power like jules per second - this is lens powers defined to
be one over the focal length and so if you're using SI
units, we'd have one over meters and that's given a special name. That's called diopters. So a one over a meter is called a diopter and this is what optometrists
and ophthalmologists use to measure lens power in,
it's represented with a D. This makes a little more sense because if your diopter
measurement is large, that means powerful lens. And if your diopter measurement is small, that means not as powerful of a lens. And so in other words, if
this focal length up here was 10 centimeters, well I'd
have to convert it to meters, so 10 centimeters is .1
meters, and then to get the power, the power
for this lens would be one over the focal length in meters, so I'd have one over .1 meters, and that would mean this
is a 10 diopter lens. That's supposed to be a D, 10 diopter. And down here, if this one
was more like 50 centimeters, I'd say that the power is one over f, I've got to convert to
meters, so one over .5 meters, and I'd get two diopter,
or two one over meters, so a diopter has units of one over meters, or meters to the negative one. Now I'm kind of lying a little bit. Spherical lenses don't
actually send their light rays exactly through the focal point. Not all of them if you're
sending parallel light rays like this through the
whole face of the lens. Some of them are going
to miss a little bit and it's called spherical aberration, so another thing that
you'd be interested in if you're trying to craft precise lenses for a specific purpose is the
idea of spherical aberration. Let me show you what that's all about. So let me hide these. So what's supposed to
happen, parallel light rays are supposed to get sent
exactly through the focal point, boom, right there. What actually happens is,
parallel light rays get sent - the ones on top get bent a little bit more and they might focus around this point, and the ones closer into
the center of the lens get sent over here, and so
this spherical convex lens kind of focuses all the light to a point, but it creates a little
bit of a blur here, so this is called spherical aberration and this is an inherit
problem with spherical lenses. The light that gets sent
through the top gets bent a little bit more than the
light that gets sent more toward the middle, and so
you've got this problem. This is a problem if you have
a highly precise situation that you need to create an image for. It might get a little bit blurry because of spherical aberration. So you might wonder, why does this spherical aberration happen? It has to do with the fact that, you know how we're always
calling these thin lenses, you might wonder, why are
we always calling them thin? Why do they got to be thin? It's because if they're thin,
all these angles involved for these normal lines
are going to be small. And if the angles are
small, that's a good thing because in physics,
physicists love this one. Here's a trick we like playing. Sine theta for small angles
is approxoimately just theta so there's all kinds
of approximations here that you can use if the lenses are thin, and you get that they all go basically through the focal point,
but there's a difference between basically going
through the focal point and exactly going through the focal point. The farther you get up here, the larger this angle is going to be, the more deviation you're going to get. It's just a problem inherit
to this spherical lens. The problem is, it's easy
to mix spherical lenses. I mean, it's easy to make a
perfectly spherical shape. If you wanted to make
one that did send them exactly through the center,
it would be harder to do. You'd have to pick a different shape because spheres just
don't cut it in that case. Spherical aberration's not even
the only type of aberration. There's other kinds of aberration. One of them is chromatic aberration, and as the name suggests,
this has to do with color and remember, dispersion
with lenses or any material, dispersion says that some
colors bend more than others. So some colors experience a
higher index of refraction red turns out experiences a
smaller index of refraction, so these red rays would
get sent that get bent a little bit less than yellow. So they might meet up there. And blue rays, blue gets
bent more higher frequency, light gets bent more. So you'd get these colors separating. So this is another problem
with spherical lenses or any type of lens, is you might get some sort
of chromatic aberration. So these are things to look out for if you're trying to create a
precise optical instrument. One of the most precise
optical instruments is the human eye, and in the human eye, you have a lot of parts. Up front you've got the cornea. This acts like the main lens. This is the front lens here. This does most of the
bending of the light, but you've also got this inner lens that's just called the lens. And this inner lens is more adjustable. This can sort of make fine adjustments to what you're looking
at depending on how close something is to your eye, this can adjust, and these ciliary muscles
are muscles that can exert a force on this lens and
can change the shape of it. This is bendable. This inner lens is bendable, and depending on what
distance away the object is, these ciliary muscles can
change the shape of this lens to make sure that the image is
formed right on your retina. This back wall acts as
the screen of your eyes, and this is where you
want the image to form. If you form a nice clean
precise image on your retina, the optical nerve can take
that information to your brain and you get a nice clean image of whatever it is you're looking for. Maybe it's a tree. Now the weird thing is,
so here's your tree. Maybe you see this, but
here's the weird thing. You've got this cornea and
this inner lens are both convex and if you're going to see a real image that's actually projected
on a screen here, this is actually going to
be an upside down image. Your tree image that forms
actually on your retina is an upside down real image. So your optical nerve sends
that information to your brain. Somewhere in your brain it
flips it over and then you get a clean image of a tree
that's right side up. So, if you were looking
at a far away tree - let's say the tree was really far away and these light rays were
coming in basically parallel you'd want to make sure
your cornea and inner lens were able to focus these light rays from some point on the tree,
straight into the retina, and you form a nice clean
image at the retina. So that's good. Let's say you were able
to do that just fine and you get a clean image of this tree, what if you got a little bit closer? Maybe you get a little bit
closer, and now the image isn't so clean, so you got this tree here. You're looking at a particular part of it. Maybe you're looking at
this part right here. You're a little closer. This part comes in here. We're looking at light rays out of here. It's not going to get bent as much. Your ciliary muscles are
going to have to adjust, but maybe they can't cut
it and this forms an image back here, but that's bad. That's bad because if you form
an image behind your retina, that's going to be blurry. You're not going to see
the nice clean image here. You're going to get this
weird blurred out image, so your ciliary muscles are
going to try to compensate, but maybe they can't, so this
person might need glasses. This person, if they were able to see the far away tree just fine, but things up close were
hard for them to focus on, we'd call this person farsighted. So farsighted people can see
far away stuff just fine. But when it's too close,
they can't focus on it, so what do we do? We add
another lens in here. We're going to add a
lens that tricks our eye. See, our eye, this farsighted person was good at seeing stuff far away. So I'm going to try and
take this tree, this object. I'm going to try and make
an image of it farther away. So how do I do that? I'm going to prescribe
this person a convex lens because the convex lens
will create a virtual image of the tree at some farther away point. We trick our eye. Now it can focus a little better. We can take this image and
bring it up to our retina, get a nice clean image of the tree. So that's for a farsighted person. For a nearsighted person, let
me get another image in here. Nearsighted people can
see stuff near just fine and it's the far stuff that
they have trouble with. So for a nearsighted person,
focusing on this tree up here that's no problem, they can
focus on this just fine. They get a nice clean image
of the tree right at the spot where it's supposed to
be at, at the retina. You get a nice clean image, but if you move the tree further away, they'd have trouble. So we need to take this tree. I'm going to take it right here. So I'm going to take this tree and I'm going to move it farther away. Now the eye has trouble seeing it. And so, now the eye is
going to form an image. Maybe the eye forms the image up here. That's not good. We need to bring this
back over to this way, so we'll have to prescribe a lens. This person was able to see
near stuff just fine, so again, we're going to have to trick our eye. We take this object. We need a lens that makes our
eye think that this object's closer than it is, and
we'll prescribe this person a diverging lens, or concave lens. This lens is going to make
a virtual image of this tree that's a little bit closer
than the actual object was so now our light that comes into our eye, once it gets to our eye, I'm neglecting a lot of
bending going on here. We can actually get this light
to focus right on our retina, which is what we wanted it to do and we get a nice clean image. So, depending on whether your
nearsighted or farsighted, you'd prescribe someone either. So nearsighted get diverging lenses. Farsighted people get converging lenses, and that's one way you can trick the eye and make it so you can
see a nice clear image.