If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Carbon 14 dating 2

Carbon 14 Dating 2. Created by Sal Khan.

Want to join the conversation?

  • blobby green style avatar for user Scholar
    Wait! How do we know what the C14/C12 ratio within a specific tree ring was to start with?
    (11 votes)
    Default Khan Academy avatar avatar for user
    • mr pink green style avatar for user James Thomson
      First you measure the ratio of C14 to C12 in the ring. Then you do the reverse calculation based on the known half-life of C14 to work out what the ratio was at the time the ring formed. The age of the ring is already known thanks to dendrochronology (dating by counting the rings, basically!). Bingo, you now know what ratio of C14 to C12 was the norm at that time.
      (9 votes)
  • mr pants teal style avatar for user dimple bows
    How can you tell how much Carbon something has? Or is there only Carbon 14..... I'm really confused.... Can I get some help?
    (9 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Strange Quark
      Carbon 14 dating uses the measurement of the ratio of carbon 14, out of all carbon atoms, within something. Since carbon 14 is a radioactive isotopes of carbon, it is not stable (meaning it does not "last" forever without turning into something else). Half of all carbon 14 within a collection of carbon atoms decays into carbon 12 atoms every ~5700 years (carbon 14's half-life). The most common isotope (think of isotope as a variation of an atom consisting of different number of neutrons) of carbon is carbon 12 (12 refers to the mass of the atom), since carbon 12 is one of the only stable isotopes of carbon. Carbon 14 is produced (mostly) by cosmic rays hitting the nitrogen within our atmosphere (as said within the last video), therefore something that does not interact with it's environment (dead or buried things) will not gain more carbon 14 after it stopped interacting with the environment. So by measuring the amount of carbon 14 something has that had not yet decayed, we can determine how long it's been since that "something" had interacted with the environment (how long it's been dead or buried)
      (2 votes)
  • duskpin ultimate style avatar for user UnrealDreamer989
    What is the record for longest living tree?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user Steve Mal
    At approx. , Sal makes the comment that after 50k - 60k years, carbon 14 dating isn't much help. Why is this so? Is it due to the amount of carbon 14 being minute enough to be unable to calculate a usable half-life? And how would this information be used to date fossils that are millions of years old? Thank you for your help.
    (4 votes)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user Alf Lyle
      The half life of C14 is well known; it is 5,730±40 years. Most samples of organic material start out with a very small amount of C14. After around 54,000 years that original amount will have diminished by a factor of ~2^9 or ~500, which makes accurate measurement difficult. And for every ~6,000 years further back the remaining C14 decreases again by a factor of two.

      C14 dating is not used to date fossils millions of years old. Uranium-lead or potassium-argon dating (and several other techniques as well) are used to date samples millions of years old.
      (9 votes)
  • old spice man green style avatar for user Michael.G.Hinton
    Sal mentioned that burning fossil fuels contribute to the amount of Carbon 14 in the atmosphere. Does nuclear testing affect it as well?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops tree style avatar for user Luca
      Yes, I remember my teacher talking about it. There was an island used to test nuclear bombs, and the dating was messed up with too much carbon, making the test results show everything was younger than they actually are.
      (5 votes)
  • male robot hal style avatar for user Victor
    Is carbon 14 constent?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user Alf Lyle
      Carbon 14 is created by highly energetic cosmic rays hitting the
      Earth's upper atmosphere. Since the rate of arrival of these cosmic rays has been reasonably constant, an equilibrium is reached between existing C14 decaying each year in the atmosphere versus the new C14 created by cosmic rays. Because we have organic material whose age we know independently, we can calculate the actual rate of creation of C14 from cosmic rays fairly accurately and calibrate our measurements. Then we can use our well-calibrated levels of C14 to determine the age of organic materials for which we don't have an independent way of knowing how old they are.
      (7 votes)
  • leaf red style avatar for user Stephen Jarman
    what happens when all the carbon 14 has decayed then how do we measure the time
    (2 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Andrew M
      We measure the ratio of C12 to C14 in the sample. That tells us the age, up to about 50,000 years or so. If there's no C14 left, that means the sample is too old to use this method. That's why the limit is around 50,000 years.
      (3 votes)
  • leaf green style avatar for user Peter  Grant
    At , Sal stated ... "since in recent times, we are burning more fossil fuels (carbon) we are altering the amount of Carbon 14 being produced".

    If the creation of carbon 14 is a function of transforming Nitrogen, via cosmic radiation, into carbon 14, estimated at a very steady rate for tens of thousands of years, what possible effect would injecting greater amounts of carbon 12 into the atmosphere, by burning large amounts of fossil fuels, now and over the past 150 years?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user cichocki.matt
      I think fossil fuels in general actually have virtually no carbon-14 left in them. If you think about it, fossil fuels are the result of plants getting buried and sitting under ground for millions of years. If carbon-14 is decaying by 50% every 5730 years, then after millions of years there will only be carbon-12 left. When we burn billions of tons of fossil fuels, we send that carbon-12 up into the atmosphere, which changes the ratio of C12/C14 because the C14 production is relatively constant from one year to the next but the C12 is going up due to humans burning fossil fuels. So it won't necessarily change the production of C14 which is a function of cosmic particles interacting with our atmosphere, but it will dilute the amount of C14 in the atmosphere so the concentration will be lower than what it would have been had we not sent so much C12 into the air.
      (3 votes)
  • aqualine seed style avatar for user Tiger Stripe Diamonds
    if tree we can tell how old a tree is by lookin at its tree rings, then would somthing like carbon 14 kill the tree or like make a delay in the groth of the tree?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • spunky sam blue style avatar for user Ethan Dlugie
    How does it even help to have a Carbon 14 record? If I looked at the proportion of Carbon 14 in an animal, there is still no way to link that animal to a specific point in time because the Carbon 14 fluctuates.
    For example, in year 1, animals take in 100 g of element X. In year 2, animals take in 50 g of X. Now, assume that half life is 1 yr and we are in year 3. If an organism has 25 g of X, we have no way of knowing if they are from year 1 or year 2.
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

In the last video, we talked about the idea that if I dug up a bone someplace, if I dug up a bone, and if I were to measure its carbon-14, and I found that it had half of the carbon-14 that I would expect to find in a living animal or plant, that I said, hey, maybe one half life has gone by, or roughly for carbon-14, one half life is 5,730 years. So I said maybe it's 5,730 years since this bone was part of a living animal, or it's roughly that old. Now, when I did that, I made a pretty big assumption, and some you all have touched on this in the comments on YouTube on the last video, is how do I know that this estimate I made is based on the assumption that the amount of carbon-14 in the atmosphere would have been roughly constant from when this bone was living to now? And so the question is, is the amount of carbon-14 in the atmosphere and in the water, and in living plants and animals, is it constant? And if it isn't constant, how do you calibrate your measurement so you can actually figure out how much carbon-14 there is relative to living plants and animals at that time? And the way that you can make that calibration, because it turns out it isn't perfectly constant, the way that you can make that calibration, there's two ways, and I have pictures here of both of them, one is to look at tree things. Tree rings. And I'm told this will work up to about 10,000 years. Up to 10,000 years old. I don't know of any 10,000 year old trees, I don't think anyone does, but maybe there's some remains of old trees. And you can look at their tree rings, and I think most of us are familiar with this idea that every year that a tree grows, it forms another layer of bark. And so you can look back to that layer of bark just for the half life of carbon-14, and then figure out how much carbon-14 was there in the atmosphere at that period in time. And so it's kind of a record of the atmosphere up to 10,000 years. If you want to go even further back, you can look at cave deposits, and the fancy word for these cave deposits are speleothems. Speleothems. Speleothems. You might be familiar with stalagmites. Those are those speleothems that are kind of coming out of the bottom of the cave, or stalactites. Those are the speleothems that are coming from the top of the cave. But the reason why these are useful is these are formed by calcium carbonate, so they have carbon in them, and slowly over, really, tens of thousands of years, the water in the cave deposits that calcium carbonate. So it's a record of the fraction of carbon-14 in some of those years. And you can go down to resolutions of as small as 10 years. And so this will give us pretty good estimates over tens of thousands of years, up to 50,000 years. And frankly, carbon-14 isn't even useful beyond, really, 50,000 or 60,000 years. So this gives us a good record of carbon-14 in the atmosphere, assuming that it's fairly uniform throughout the atmosphere, and all evidence suggests that, and that that uniformity through the atmosphere also goes into the water supply, and into living plants and animals. Now, the other thing, and I looked into this a little bit, it actually turns out because we are spewing so much fossil fuel right now, we are changing the amount, or the proportion of carbon-14 much, much faster than has happened in other time periods. So just to answer the question, it's actually probably in really, the last 50 years where the fossil fuel use has really exploded that we've really been changing the proportion of carbon-14 relative to the other isotopes of carbon. But anyway, hopefully that rests some of your worries about the assumption that I made in the last video about carbon-14 being relatively constant. There are ways to look back at specific years and figure out the relative amounts of carbon-14, so it is a pretty good way of estimating how old living things are, especially things that are less than 50,000 years old.