Main content
Organic chemistry
Course: Organic chemistry > Unit 4
Lesson 2: Enantiomers- Drawing enantiomers
- Cahn-Ingold-Prelog system for naming enantiomers
- R,S system
- R,S (Cahn-Ingold-Prelog) naming system example 2
- R,S system practice
- More R,S practice
- Fischer projection introduction
- Fischer projection practice
- Optical activity
- Optical activity calculations
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Fischer projection practice
How to assign configurations to chirality centers from a Fischer projection.
Want to join the conversation?
- Our Teacher told us this does not work.. If there were say a chain of 6 linear carbons. And you drew it out vertical.
How can all six go away from you? Please explain.(10 votes)- Technically, you are correct. All 6 carbons can't all go away from you.
However, every other carbon faces toward you. Therefore, you should draw it as a horizontal line. For 6 carbons (assuming this is hexane), the pattern would be horizontal, vertical, horizontal, vertical, horizontal, and then vertical.
Hopefully that answers your question! ;)(6 votes)
- Is the compound in the structure called (2R,3S)-2,3,4-trihydroxybutanoic acid?(8 votes)
- How can the Carbon-Carbon bond between the two chirality centers be going away from us in space regardless of which Carbon we start at? Either the top Carbon is closer to us or the bottom Carbon is closer to us, so how can they be dashes from both directions?(5 votes)
- What he did is okay, but it's not easy to see without a model.
Usually, we look at a Fischer projection so one of the vertical bonds to a chiral carbon is in the plane of the paper.
Then, the vertical bonds above and below that bond are behind the plane of the paper.
When we move to a different chiral carbon we may choose to view the molecule eo a different bond is in the plane of the paper.(5 votes)
- atin the vedio there r 2 chiral centers so there r 4 enantiomers we draw 2 only 8:30(1 vote)
- When there is 2 chiral centers then the max number of stereoisomers is 2^n which in this case is 2^2 which gives us 4 max stereoisomers. He drew only the 2 enantiomers because the other two are diastereoisomers.(9 votes)
- Firstly great job on the whole project it has been really helpful.Secondly can you please tell me the name of the compound in this example? Thanks in advance!(5 votes)
- The name would be 2,3,4-trihydroxy butanoic acid.Mostly :P(1 vote)
- Dashes and wedges not so triangular - does it have any consequence?(2 votes)
- The wedge should be triangular, with the sharp end pointing to the chiral carbon.
However, many chemists use a simple dashed line rather than a dashed wedge for the bond that is furthest away from the viewer.(3 votes)
- How would you be able to turn the Fischer Projection into a Newman Projection? Any tips to keep in mind?(2 votes)
- So what will be the direction of rotation of the compound in the video?(2 votes)
- At around, he mentioned using the shortcut to determine whether a molecule is R or S. Does this trick still work if the hydrogen molecule is in the plane of the paper? 4:38(2 votes)
- Would be helpful if the video included going from a bond-line structure to a Fischer projection.(2 votes)
Video transcript
- [Lecturer] In the last
video, we looked at a Fischer projection of a compound that
had only one chirality center. This molecule has two, and
our goal is to determine the configuration of
each chirality center, so at the intersection of
these lines here, we know that this is a chiral center and then we have another
one down here, so those are the two chirality centers. Let's focus in on the top
one here, and let's assign a configuration to that carbon. Let me go ahead and draw
the carbon on the right. We know that in a Fischer
projection, the horizontal lines represent a bond that's
coming out of the page at us, so over here on the left,
the bond to this hydrogen is coming out of the page and
so is the bond to this OH, so let's draw them on the right. We have a bond to a hydrogen
coming out of the page on the left, and then we
have a bond to OH coming out of the page on the right, so those, those are represented by a wedge. We know that the vertical
lines in a Fischer projection represent a bond that's
going away from us in space, so this line right here is
a bond that's going away from us, so that would be a
dash, so let's draw that in, and that's going to a
carboxylic acid which we know is a carbon double bonded to
an oxygen, bonded to an OH. Let's look at the other vertical line, so this one down here,
so that represents a bond going away from us in space,
so we draw that one in, so we're essentially staring
down at our chiral center. And this carbon down here is
directly bonded to an oxygen, a carbon, and a hydrogen,
and those are the only atoms that we need to assign a
configuration so those are the only ones that I'm going to draw in. Let's go back to our chiral
center, so this carbon right here, we know to assign a
configuration, we look at the atoms that are directly
bonded to that carbon. There is a hydrogen, an oxygen
and then our two carbons. Out of those atoms, oxygen
has the highest atomic number so the OH group gets the highest
priority and we say that is a number one. The hydrogen has the lowest
atomic number so that's the lowest priority, so we
say that's a number four. Next, we have carbon versus
carbon, so this carbon versus this carbon and we
know that carbon has the same atomic number, and so we've
seen how to break our tie in earlier videos. We look at the atoms that
are directly bonded to those carbons. This bottom carbon here is
directly bonded to an oxygen, a carbon, and a hydrogen,
so we put those in order of decreasing atomic number,
so that's oxygen, carbon, hydrogen. This top carbon here, the
one in our carboxylic acid, has a double bond to an oxygen, and so we treat that like it's
two bonds to two different oxygens, even though it's
really only one double bond to one oxygen, and then we
have another bond to an oxygen on the right here so we
could say, for the purposes of assigning a configuration,
that would be oxygen, oxygen, oxygen. Next, we compare so we have
an oxygen versus an oxygen, so that's a tie. We go on to our next atom
which is oxygen versus carbon, and obviously, oxygen wins. It has the higher atomic
number, so the carboxylic acid group gets the higher priority
so this must be group two, and this group down here
must be group three. Once we've done this, our next
goal is to put the hydrogen going away from us in space,
but I'm going to use the trick that I talked about in the
last video because it means you don't have to move the
molecule around in your mind. You can just use this little trick. And the trick was to ignore
the hydrogen for the time being and just look at one, two, and three. Here's one, here's two, and
here's three, so if we go around in a circle from one
to two to three, we're going around in this direction. That is counterclockwise, and
counterclockwise we know is S. So this looks S, but the
hydrogen is coming out at us in space and so we know
all we have to do is take the opposite so even though
it looks S, since the hydrogen is coming out at us, we
know it's actually R, so this is actually, actually R, so if you actually made
this molecule and rotated it and put the hydrogen going
away from you in space, then you would see that it's
R directly, but this trick allows you not to worry about
that, so I find this to be the easiest way to assign a configuration. For me, it's definitely the fastest. Let's move on to our
other chirality centers, so this carbon down here,
so let me draw that one in, and let's look at our
horizontal lines, so we have a bond to an OH on the left,
and a bond to a hydrogen on the right and those are
coming out at us, since those are horizontal lines so
that OH is on the left, and we have a hydrogen on the right. Let's look at our vertical
lines, so this line right here means a bond going away from
us in space, so we're staring down at our chiral center,
and that's a bond to a carbon and that carbon is directly
bonded to an oxygen, a carbon, and a hydrogen,
so let's draw those in. Again, we don't need all of
the atoms because this is all we need to assign a
configuration so that's all I'm drawing in, and then let's
look at this other vertical line, so this one down here,
so that's a bond going away from us in space to this
carbon, so let's draw that in so we have a dash over here on
the right, going to a carbon and this carbon is directly
bonded to two hydrogens and an oxygen, so let's
draw that in, so we have our two hydrogens and an oxygen. Going back to our chiral centers,
so this carbon right here, and we look at our atoms that
are directly bonded to it and we have an oxygen, a
hydrogen, and two carbons, so we know that the oxygen
has the highest priority so once again, the OH group
is the highest priority group and the hydrogen is the lowest
priority group and we have a tie again between the carbons, so the carbon versus carbon,
the top carbon is directly bonded to oxygen, carbon,
hydrogen, so in order of decreasing atomic number,
oxygen, carbon, hydrogen, the bottom carbon would be
oxygen, hydrogen, hydrogen, so oxygen, hydrogen, hydrogen. We look for the first point
of difference so we have oxygen versus oxygen, so that's a tie. Next, we have carbon versus
hydrogen and we know that carbon has the higher atomic
number so this top group here gets higher priority so
this should be a number two and this group down here
should be a number three. Let's use our trick again,
so we ignore the hydrogen for the time being and we
look at one, two, and three, so one to two to three is
going around in this direction which we know is clockwise, so
we can say that this looks R because clockwise is
R, but because this is a Fischer projection, the
hydrogen is coming out at us in space, so we know our trick
is just to take the opposite of how it looks, so if it
looks R, we can say that it's actually S, so we write
down here actually, actually S. All right, so we've done it. We've determined the configuration
of each chirality center so this chiral center, let
me use a different color, let me use a red over here, so this chiral center,
we said that one was R, so it's R at this carbon and
then at this carbon down here it is S. Let's also practice drawing the
enantiomer of this compound. We saw how to do that in the last video. We put a mirror right here
and we reflected our groups in the mirror so this OH here, I like to draw a dashed line,
so we just reflect that, and therefore we would have
this, and then on this side, we would have a hydrogen so
we're reflecting that hydrogen and then let's go to
this hydrogen down here, so we just reflect this in our mirror and then we draw our horizontal
line and then we would have an OH, so we draw in an OH here. We can put in our vertical
line like that and then we have a carboxylic acid, but this
carbon is not a chiral center so we don't really need to worry about it. We can just write in
COOH here, and then same with this carbon, not a chiral
center so we can just write CH2OH. The important part is if
we have an OH on the right, it'll be on the left in the mirror image. If we have an OH on the left
in a Fischer projection, it'll be on the right in a mirror image, so now we have a pair of
enantiomers, so these two are mirror images, right? The one on the right is
a mirror image of the one on the left, but the one on
the right is not superimposable on the one on the left.