Main content
Organic chemistry
Course: Organic chemistry > Unit 3
Lesson 1: Naming alkanes- Representing structures of organic molecules
- Naming simple alkanes
- Naming alkanes with alkyl groups
- Correction - 2-propylheptane should never be the name!
- Common and systematic naming: iso-, sec-, and tert- prefixes
- Naming alkanes with ethyl groups
- Alkane with isopropyl group
- Organic chemistry naming examples 2
- Organic chemistry naming examples 3
- Naming a cycloalkane
- Naming two isobutyl groups systematically
- Organic chemistry naming examples 4
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Organic chemistry naming examples 4
Organic chemistry naming examples 4. Created by Sal Khan.
Want to join the conversation?
- When 'Tetra' means theres 4 methly groups, whats the other names for the other numbers of groups - 1,2,3,5,6,7 ?? thanks(6 votes)
- Matthew's answer is not totally accurate. The di/tri/tetra prefix doesn't need to refer to substituents on the same carbon. For example, 2,2,6,6,7-pentamethyloctane (from one of Jay's videos) would be the correct IUPAC name, even though there are 5 methyl groups.
So, to answer the question:
5 - penta
6- hexa
7 - hepta
8 - octa
9 - nona(20 votes)
- > when numbering the carbon chain of the substituent (in doing the SYSTEMATIC approach, not common name approach), is it a general rule to number carbon '1' as being the carbon connected to the parent group? 8:26
In completing the 'answer' before seeing Sal do it, I had trouble knowing which carbon was carbon '1', on the methylethyl substituent, and thus didn't know where to put the two methyl groups.
thanks! lauren :)(8 votes)- Yes, carbon '1' of the substituent should always be the one that is connected to the main alkane in terms of the systematic approach.(6 votes)
- Who came up with the systematic way of naming?(4 votes)
- it was IUPAC.It made a group known as IUPAC nomnclature in those days and told everyone to bring there names for the compounds and the reason behind naming them like that.Many people came up but one of them(i don't remember the name)came up with what is the base of organic chemistry today
hope that helps.(7 votes)
- How do i know the shape of the cyclohexadecane? Do for example a regular and one like Sal drew behave chemically different?(4 votes)
- As long as you join 16 carbons together in a ring it shouldn't really matter to your teacher. You couldn't know the shape beforehand really, and I don't think Sal has it quite right here anyway. But like I said, it shouldn't matter.(4 votes)
- What is the difference between bis- and di-?(4 votes)
- What is BIS in the latest example? you are not referring to it at all.(2 votes)
- It's mentioned in the last video. However, unlike "di," it's only used when you have two complex branches within parenthesis as shown.(4 votes)
- At, when the connection to the middle carbon is made to the ring, does that count as another carbon connection? Or is that connection just there to form the Y shape? I'm confused... I see that the connection has to be made for the isopropyl group to be attached to the ring, however does it serve as another carbon attachment? Or is it just solely there to be used as a connection to the cyclohexadecane? 3:25(2 votes)
- The connection is not another carbon but simply a connection to join it to cyclohexdecane. If we name them in the other way one purple line and one yellow line makes the ethyl and the other purple line being the methyl. Which in other words is isopropyl. Hope this answered your question. :)(1 vote)
- Where can you get the official rules for systematic naming?(1 vote)
- For the last example, why aren't the two t-butyl groups not named something like 2methylpropyl in the systematic naming as the longest chain would consist of three carbons?(2 votes)
- That was my question as well. Seemed like a 3-carbon chain (propyl) with a methyl at location 2?(1 vote)
- Is 1,1-dimethylethyl legit??
It is clear to me the longer #chain is 3 (propyl) not 2 (ethyl)
I will name it 2-methylpropyl,
so 1,3-bis(2-methylpropyl)cyclopentane(2 votes)- That is the systematic name yes. You name it starting from the carbon that connects the group to the parent chain.(1 vote)
Video transcript
We've done a bunch of examples
looking at the actual molecular structure and trying
to come up with the name. In this video, we'll go
the other way around. We'll start with the name and
see if we can actually draw the molecular structure of
whatever this might be. So let's start. When you first look at these,
it's very daunting, but you always want to start really at
the end, so you know what kind of the core of the structure
is going to be. So if you look at the end of
this, you have an -ane, so there's not going to be any
double or triple bonds here. It's all single bonds. It's a hexadecane, so let's
think about that. Hexadec-, that's six and ten. Hexadec- was a prefix for
16, so this is 16 single-bonded carbons. And cyclohexadecane, so 16
single-bonded carbons in a ring, so this part
of it right here. So let me just do this. So cyclohexadecane, let's draw
that part first. It's not easy to draw even a 16-carbon ring,
so let's start here. One, two, three, four, five,
six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, and then sixteen. I think I got it. Let me count them again and
then I can connect them up into cycles. It's one, two, three, four,
five, six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, sixteen. All right, I drew the
cyclohexadecane part. Now, if we go back a little,
let's see, we have a 2,9-diisopropyl. What does this mean? This means that we have an
isopropyl at the two and the nine spot. Now when you are drawing the
structure from the name, you could just arbitrarily on
someplace on this ring pick what your one through your
sixteen spots are. I'll just arbitrarily pick them,
because I could have drawn this ring any which way. One, two, three, four, five,
six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, sixteen. All right, so this next
piece right here, let me do this in magenta. 2,9-diisopropyl, this is telling
us that at spot number two and at spot number nine,
I have isopropyl. The di- is just saying I have
two isopropyls at two and nine, so you can kind
of ignore the di-. I have an isopropyl, and you may
or may not remember that an isopropyl looks like this. It's three carbons, so it's
going to be one, two, three, and the connection point to the
main ring in this case is going to be in the middle
carbon, so it kind of forms a Y. All of the isos, the isopropyl,
isobutyl, they all look like Y's, so it's going to
be linked right over here. That's also going to happen at
the ninth carbon, so at the ninth carbon we're going to
have another isopropyl. We're going to have another
isopropyl at the ninth carbon. All right, we've taken care
of the 2,9-isopropyl. Then we have the 6-ethyl, which
is just a two carbon. Remember, meth- is one, eth-
is two, prop- is three. Let me write this down. So this is going to be prop-
is equal to three. Isoprop- is equal to that type
of shape right over there. In this case, eth- is equal to
two, so it's a 6-ethyl group. So at six we have an ethyl
group, so one, two, carbons, and it's connected at the six
carbon on the main ring. And then finally we have
a cyclopentyl. So if we look at-- let me find
a color I haven't used yet-- cyclopentyl. so pent- is five, but it's five
in a cycle, so this is a five-carbon ring that's
branching off of the main ring. It's at the first spot. Let me draw a five-carbon rings,
so pent- is equal to five, so it would look
like this, one: two, three, four, five. It looks just like a pentagon. That's a cyclopentyl group and
it's attached to the one carbon on my cyclohexadecane,
so it is attached just like that. We're done. We've drawn 1-cyclopentyl-6-
ethyl-2,9-diisop ropylcyclohexadecane. Let's do another one. I think we're getting
the hang of it. So here, maybe we can do this
one a little bit faster. Let's see, we have a
tetramethyldodecane, so the main root here is the
dodecane, do- for two, dec- for ten. This is a 12-carbon chain. It's not in a cycle, so let
me just draw it out. We have one, two, three, four,
five, six, seven, eight, nine, ten, eleven, twelve, and so
we can just number them arbitrarily, just because
I could have drawn this any which way. So it's one, two, three, four,
five, six, seven, eight, nine, ten, eleven, twelve. That's the dodecane,
all single bonds. Then we have a
3,6,9,9-tetramethyl. All this is telling us--
remember, meth- is one carbon, so all this is telling us is
at the three, the six, the nine, so at the three, the six
and twice at the nine spot, we have methyl groups, and we
have four methyl groups. That's all the tetramethyl
is saying so it's a little bit redundant. We know we have four of
them here: 3,6,9,9. We have methyl groups at
each of those places. We have one methyl group at
three, and then that is bonded with the third carbon on
the dodecane chain. We have one at six bonded
to the six carbon on the dodecane chain. We have two at nine, so that's
one at nine and then we have another one at nine bonded
to the nine carbon on the dodecane chain. And we're done. That's it. That's 3,6,9,9-
tetramethyldodecane. Let's do another one. 1,3-bis(1,1-dime
thylethyl)cyclopentane. So once again, just kind
of breathe slowly. It's very daunting right when
you look at it, but just start with the core: cyclopentane. That's just a simple
five-carbon ring. A five carbon ring that looks
like a pentagon: one, two, three, four, five. There you go. That is a five-carbon ring. We can number it however we
want, so one, two, three, four, and five. This is telling us at the one
and the three position we have-- and the bis- is
kind of redundant. This is saying we have
two of these things. Obviously, we have two. We have one at the one
and one at the three. So you can kind of
ignore the bis-. That's just the convention
and we've seen that multiple times. But at each of those positions,
we have a 1,1-dimethylethyl. So what's a dimethylethyl
look like? So let's think about
it a little bit. Let's think about it and
let me do it orange. They obviously named it using
systematic naming and what we have here, we have an ethyl
as kind of the core of this side chain. So if an ethyl is equal to two
carbons, so this is two carbons right there. So let me draw a two
carbon: one, two. That is two carbons
right over there. I'm just drawing it
at the three spot. I'll draw it also at the
one spot, actually. So that is two carbons
right there. That's the ethyl part. And then on 1,1, so if we number
them, we number where it's connected, so
it's one, two. This is saying 1,1-dimethyl. So on this ethyl chain,
you have two methyls. Remember, methyl is equal to
one, so this is one carbon. You have one carbon. That's what methyl is, but
you have two of them. You have dimethyl. You have it twice
at the one spot. So you have one methyl here
and then you have another methyl there. Same thing over here. You have 1-methyl on the one
spot and then you have another 1-methyl on the one spot. And then you are connected at
positions one and positions three, so you're connected there
and you are connected right over there. And you're done, That's it. That is our structure. Now, if you did this with common
naming, instead of this group being a 1,1-dimethylethyl,
you might see that we're connected to
a group that has one, two, three, four carbons in it. The carbon that we're connected
to branches off to three other carbons. It is a tert-butyl. So you can also call
this a 1,3-- let me just write it down. So another name for this would
be 1,3-tert-- or sometimes people just write a t there--
t-butylcyclo-- no, actually I should say di-t-butyl, because
we have two of them. 1,3-di-t-butylcyclopentane.