Main content
Organic chemistry
Aromatic stability V
Aromaticity of polycyclic compounds, such as naphthalene. Created by Jay.
Want to join the conversation?
- Napthalene is less stable aromatically because of its bond-lengths. Can somebody expound more on this as to why napthalene is less stable?(5 votes)
- Ordinary single and double bonds have lengths of 134 and
154 pm. In benzene, all the C–C bonds have the same length,
139 pm. In naphthalene, the carbon–carbon bonds are not the same length. The bonds C1–C2, C3–C4, C5–C6 and C7–C8 are about 136 pm in length, whereas the other carbon–carbon bonds are about 142 pm long. This is almost a system of alternating double and single bonds. It may be that the long bonds are so far apart that the overlap between the p orbitals is not very effective in delocalizing the electrons.(5 votes)
- How do we know the energy state of an aromatic compound? How this energy is related to the configuration of pi electrons?
Please help. Thank you(2 votes)- You could just as well ask, "How do we know the energy state of *any* compound?" The process isn't exactly easy, but we call it Molecular Orbital theory. If you haven't already seen it, there is a short playlist on molecular orbitals starting here:
https://www.khanacademy.org/science/organic-chemistry/conjugation-diels-alder-mo-theory/molecular-orbital-theory/v/intro-to-molecular-orbital--mo--theory
The middle video of that playlist might partially answer your second question. But then, the real answer to both your questions involves much more sophisticated "quantum math", as Jay sometimes puts it. If you want to see what that quantum math looks like (and feel like torturing yourself), check out the bottom half of Wikipedia's page on the Hückel method:
http://en.wikipedia.org/wiki/H%C3%BCckel_method(4 votes)
- At, anthracene is referred to as an isomer of naphthalene. Could anyone please tell which type of an isomer it is? 5:10(2 votes)
- i think you heared wrong as he said that azulene is an isomer of naphthalene ,and i agree because isomers mean that compounds have an equal number of each atom i.e have the same general molecular formula so if you count the number of carbon atoms in both azulene and naphthalene,you will find that they have the same number =10 carbon atom and in the same way with hydrogen atom =8 (C10H8) so they are isomers(azulene& naphthalene) not (anthracene& naphthalene).(3 votes)
- I'm sorry if this is obvious but how is the first and third drawn resonance structures of naphthalene different (i.e. isn't the one just a flipped version of the other?) or does it matter geometrically which ring is the 'left' and which is the 'right'? Thanks(3 votes)
- Shouldn't the dipole face from negative to positive charge?(2 votes)
- No, it's a vector quantity and dipole moment is always from Positive to Negative.(1 vote)
- I'm curious why the top carbon of the five-membered ring is sp2 hybridized rather than sp3; with the hydrogen attached, two C-C bonds, and the lone pair it seems like it should be sp3.(2 votes)
- If it was sp3 then there would not be a cyclic set of p orbitals so it could not be aromatic. Remember that being aromatic is energetically favourable.(1 vote)
- why benzene is more stable than naphthalene ?!the benzene has a resonance energy equal 36 k cal/mol and naphthalene is 61 k cal/mol so naphthalene is worth to be more stable than benzene as we compare between mole of benzene and mole of naphthalene not between one ring and two rings,and if you let naphthalene in room temp.will be stable and less volatile than benzene.! please answer in short time.(1 vote)
- Volatility has nothing to do with stability.
Benzene has six π electrons for its single aromatic ring. Its resonance energy is 36 kcal/6 electrons = 6.0 kcal/electron.
Naphthalene has ten π electrons for its two aromatic rings. Its resonance energy is 61 kcal/10 electrons = 6.1 kcal/electron.
Naphthalene has less resonance energy per ring, but it has the same resonance energy per electron.
Strictly speaking, the Hückel rule applies only to monocyclic systems.
Naphthalene is a bicyclic system. It has 4n+2 π electrons, but the Hückel rule does not apply to it.(2 votes)
- What determines the volatility of a compound? I mean if it's not all about aromatic stability? And if Khan has a videdo about it, please refer to me :)(1 vote)
- It is the strength of the intermolecular forces that determines the volatility of a compound(2 votes)
- At which position in napthalene is the carbonation most stable(1 vote)
- what is difference in aromatic , non aromatic and anti aromatic ?(0 votes)
- Aromatic compounds have
1. continously overlapped p orbitals
2 .satisfy (4n+2) pi electron rule.
Non-Aromatic compounds don't satisfy the 1'st rule
Anti-Aromatic compounds satisfy 1'st rule but have (4n) pi electrons(3 votes)
Video transcript
Huckel's rule can
only be applied to monocyclic compounds. However, there are some
polycyclic compounds that seem to have some
form of aromatic stability. And one of those
compounds is naphthalene. So over here, on the left,
we have the dot structure for naphthalene. Naphthalene is a white
solvent that is traditionally the component of moth balls. And so it has a very
distinctive smell to it. Now naphthalene is aromatic. However, it's not as
stable as benzene. But we could think about it as
two fused benzene-like rings. And so if I were to analyze
a naphthalene molecule using our criteria for
aromaticity, I could look at each carbon
in naphthalene. And I could see that each
carbon has a double bond to it. So each carbon is
sp2 hybridized. And therefore each carbon has a
p orbital, so an unhybridized p orbital. And so there are a total of
10 carbons in naphthalene. And so if I go over here to
the drawing on the right, each of those carbons
has a p orbital. So I could draw
in the p orbitals on each one of my carbons
in here like that. Now, these p orbitals are
right next to each other, which means they can overlap. And so if you think about
the criteria for a compound to be aromatic,
this would sort of meet that first
criteria, there right? You can see that you have
overlap of these p orbitals. And in this case, we
have delocalization of electrons across
the two rings. Now, when we think about
the second criteria, which was Huckel's rule in terms
of number of pi electrons our compound has, let's go
ahead and analyze naphthalene, even though technically we
can't use Huckel's rule. But if we look at it, we can
see that there are 2, 4, 6, 8, and 10 pi electrons. So naphthalene has
10 pi electrons. Think about Huckel's
rule, 4n plus 2. If n is equal to 2,
4 times 2, plus 2 is equal to 10 pi electrons. And so 10 pi electrons
is a Huckel number. And so it looks like
naphthalene fulfills the two criteria, even
though again technically we can't apply Huckel's rule
to polycyclic compounds. But those 10 pi
electrons are fully delocalized
throughout both rings. And one way to show that would
be using resonance structures. So if we were to draw
a resonance structure for naphthalene, I could
take these electrons and move them in here. And then these electrons
would go over here. And then these
would go over there. So that would give me
another resonance structure. So if I go ahead
and draw the results of the movement of
those electrons, I would now have my pi
electrons over here like this. So it's a benzene-like
ring on the left. And then on the right, we
still have these pi electrons in here like that. Now, in this case, I've shown
these pi electrons right here. I've shown them
on the left side. But in reality,
those pi electrons are above and below
our single bond, in terms of the probability
of finding those electrons. And so I don't have to draw
it the way I did it here. I could draw it like this. So let me go ahead
and put this is going to be equivalent
to this structure. So these aren't different
resonance structures. I'm just drawing a different way
of representing that resonance structure over here. So I could show those
electrons in blue over here on this
side like that. So let me go ahead and
highlight those electrons. So the electrons in
blue are right here. And these two drawings
are equivalents after I put in my other
electrons right there. So the dot structures
are just an imperfect way of representing the molecule. So I could show those pi
electrons on the left, I could show them on the right. It's really the same thing. Once I draw this
picture, I'm now able to draw another
resonance structure. So I can draw another resonance
structure from this one right here. I could move these
electrons over here, move these electrons
over here, and then finally, move these
electrons over here. And so when I go ahead and draw
the resulting dot structure, now I would have, let's
see, these pi electrons are still here. And then going around my
ring, it would look like this. So there are a total of
three resonance structures that you can draw
for naphthalene. Again, showing the
delocalization of those 10 pi electrons. And showing you a little
bit about why naphthalene does exhibit some
aromatic stability. It's not quite as
aromatic as benzene. All of benzene's bonds
have the exact same length. But naphthalene is shown to
have some aromatic stability. Naphthalene is the
simplest example of what's called a polycyclic
aromatic hydrocarbon. And there are several
different examples of polycyclic
aromatic hydrocarbons. Another example would be
something like anthracene. And so there are many, many
examples of ring systems that contain fused benzene-like
rings throughout the system. But instead of
focusing on those, I wanted to do
another example which is an isomer of naphthalene. And it's called azulene. And azulene is a beautiful
blue hydrocarbon, which is extremely rare
in organic chemistry to have a hydrocarbon
that's blue. It also has some other
interesting properties. It has an increased
dipole moment associated with the molecule. There's also increased
electron density on the five-membered ring. So over here on the
left, we have azulene. And here's the five-membered
ring over here on the left. And it turns out there are more
electrons on the five-membered ring than we would
expect, giving it a larger dipole moment. And if we think about
a possible resonance structure for azulene,
we can figure out why. So if I took these pi
electrons right here and moved them in here, that
would push these electrons off onto this carbon. So if I go ahead and draw the
resulting resonance structure, I would have an ion
that looks like this. So if I think about
my formal charges, if I think about these
electrons in blue right here, those are going to go
off onto that top carbon. So there's that
top carbon is going to get a lone pair
of electrons, which gives that top carbon a
negative 1 formal charge. So it's a negative formal
charge on that carbon. And then if I think about
this carbon over here, this carbon lost a bond. And so that's going to end
up with a positive charge. So we have a carbocation
right here like that. And if I analyze this
resonance structure, it has two formal charges in it. But if I look over on the right,
I can see on the right there, this is a seven-membered
ring on the right. And if I look at it, I can see
there are six pi electrons. And then right here,
I have a carbocation. And so this is one
of the examples we did in the last video. So every carbon
is sp2 hybridized. And so we have
overlapping p orbitals. And we have a total
of 6 pi electrons. And so this seven-membered
ring is aromatic. If I look over
here on the left, I can see that I have
a five-membered ring. And I have some pi
electrons right here. And the pi electrons
right here, as we saw in the example
of naphthalene are actually being
shared by both rings. So I could pretend
like those electrons are right here on my ring. And then this ring
also has electrons like that with a negative
1 or more charge. And again in the last video, we
saw that this ion is aromatic. It has a total of
six pi electrons. So go ahead and highlight those. So these, these, and
these are all pi electrons when you think about
resonance structures. And so 6 pi electrons. And all the carbons turn
out to be sp2 hybridized. Again, look at
the previous video for a much more detailed
explanation as to why these two ions are aromatic. And so since these
ions are aromatic they have some
aromatic stability. And this resonance structure,
over here on the right, is a much greater contributor
to the overall picture of the molecule. And the negative
charge is delocalized throughout this
five-membered ring over here. And the positive charge is
delocalized or spread out throughout this
seven-membered ring. And that is what gives azulene
its larger dipole moment. So there's a larger dipole
moment in azulene than expected because of the fact
that this would give us two aromatic rings,
which confers, of course, extra stability. And so once again,
this ion down here was the cyclopentadienyl anion. And then this
cation over here was the cycloheptatrienyl cation
from the previous video. The redistribution
of these electrons allows azulene to absorb
in the orange region, which is difficult for most
organic molecules because it's a
longer wavelength. And that allows it to reflect in
the blue region, which is again the rare, especially
for a hydrocarbon. And the fact that it's blue
is where this part of the name comes in there, like
azure, as in blue. So these are just two
examples of some ring systems that also exhibit some
form of aromatic stability.