Main content
Organic chemistry
Aromatic stability II
How the geometry of a molecule plays into aromaticity. Why cyclooctatetraene is not aromatic like benzene. Created by Jay.
Want to join the conversation?
- Why did he rotate the cyclooctatetraene when he inscribed it into the Frost circle? If he had just inscribed it as it was on the left (like a stop sign) instead of rotating it, then it would have 4 bonding and 4 antibonding molecular oribitals, and no nonbonding ones (instead of the 3 bonding, 2 non, and 3 anti). So, why and how did he know to rotate it?(13 votes)
- From what I learned in class, in order for it to work you have to have a single point be touching the bottom. You can't just rotate it.(22 votes)
- i think i'm missing something here, but how does Jay know that 8 carbons in a ring could give a
"tub" conformation?(8 votes)- It's because SP2 hybridized atoms like to have their bonds at a 120 degree angle. The strain this tendency puts on the atoms, forces it to go in a tub conformation.(18 votes)
- Why does a 6-carbon ring not have "angular strain", but an 8-carbon ring does? And what about 10-, 12-... carbon rings?(7 votes)
- We are talking about planar conjugated polyenes, all of which have sp² carbons with bond angles of 120°.
Benzene has a 6-carbon ring. It is a regular hexagon with internal angles of 120°. This exactly matches the sp² bond angles, so there is no "angular strain".
The internal angles of regular polygons
= 180°×(n-2)/n, where n is the number of sides. Thus, for 8-, 10-, and 12-membered rings, the internal angles are 135°, 144°, and 150°. The planar rings with all cis double bonds become impossibly strained as the ring size gets larger.
This does not mean that these molecules cannot exist. They just pucker in order to relieve the strain. Just as cyclohexane puckers into a chair and a boat form, cyclooctatetraene exists in a chair and a boat form, but it is not aromatic because it is not planar.
Compounds of this type are called annulenes. Benzene is [6]annulene. Annulenes with 14 or more carbons can accommodate trans double bonds in the ring and still be planar, so [14]annulene and [18]annulene are aromatic.(14 votes)
- At, he says that cyclotetratraene with the two +1 charged carbons is aromatic. I would disagree. Wouldn't this not be aromatic since there is not a continuous set of overlapping p-orbitals? Correct me if I'm wrong. 9:06(3 votes)
- The positive charges represent empty p orbitals. They are still overlapping the filled p orbitals.(3 votes)
- Which are more stable : aromatic or anti aromatic compounds ? And why ?(0 votes)
- Aromatic compounds are more stable than antiaromatic compounds because they have all of their pi electrons in low-energy bonding molecular orbitals.(8 votes)
- Hey guys, it seems that there were no videos related to conjugated systems or molecular orbitals, where can I read on these topics?(1 vote)
- Try these videos:
https://www.youtube.com/watch?v=Cm7xZIoVdNY
https://www.youtube.com/watch?v=6rjYbYLSb74
https://www.youtube.com/watch?v=kiGw0GqNLo0(4 votes)
- athe says there are 8 MOs, but then proceeds to draw 3 bonding orbitals and 3 anti bonding orbitals. 3+3=6, where are the other 2? 5:00(2 votes)
- There’s two on the dotted line, don’t you see them? Orbitals that have the same energy are called nonbonding orbitals and don’t contribute to the bonding in the molecule(2 votes)
- If a carbon has a positive charge on it with also bonded to two other carbon atoms, then what will be its hybridization state?
Please help. Thank you.(1 vote)- A positively charged carbon would normally have three other atoms bonded to it still, so I'm going to answer the question as if you have a positively charged carbon atom that is bonded to two other carbon atoms and one hydrogen atom. Then, you have 3 groups: one sigma bond to hydrogen, and two sigma bonds to the carbons. 3 groups need 3 hybrid orbitals, so we add 3 atomic orbitals (s+p+p) to get 3 hybrid sp2 hybrid orbitals. That is, carbocations are sp2 hybridized.(4 votes)
- Why is it that cyclooctatetraene is nonplanar but the oxidized version of it (I suppose it would be cyclooctatriene) is planar? He implies in the video that it is because the cation has all sp2 hybridized Carbons, but aren't all of the carbons in cyclooctatetraene be sp2 hybridized as well?(1 vote)
- The interior angles in a regular octagon are 135 °.
The normal sp² bond angle is 120 °.
If the ring were planar, every bond angle would be strained by 15 °.
Cyclooctatetraene (COT) could be planar if there were some stabilization energy to compensate.
A planar COT ring would have alternating double and single bonds like benzene, but it has 8 π electrons.
This makes it antiaromatic (unstable).
With antiaromaticity and ring strain, COT will do everything it can to avoid being planar.
The COT dication contains 6 π electrons.
This makes it aromatic (stable).
The stabilization energy compensates for the strain, so the COT dication is planar.(3 votes)
- What is the MO Theory ? (At) 3:28(1 vote)
- We have 2 major bonding models, valence bond (VB) theory and molecular orbital (MO) theory.
You likely already know of VB theory even if you haven't heard of it, Lewis structures, hybridisation etc. come from there.
The biggest different is in MO theory electrons are in orbitals spread over the whole molecule, whereas in VB theory electrons are in pairs shared between only 2 atoms.
I don't think there are any Khan videos specifically on MO theory to expand on this more though sorry.(2 votes)
Video transcript
Last video, we
observed that benzene exhibits aromatic stabilization. And when chemists first
made cyclooctatetraene, which is this
molecule right here, they assumed it would
react like benzene. Because it looks like
it has alternating single, double bonds,
and it has a ring. And so they just assumed that
it would behave like benzene. It turns out cyclooctatetraene
does not react like benzene. So benzene did not react the
way cyclohexene did up here. So cyclohexene
will give us a mix of enantiomers when the bromine
adds across a double bond. Benzene does not do that. Cyclooctatetraene does,
as a matter of fact. So it will give you a
mixture of enantionmers and the bromine will add across
one of those double bonds. It turns out cyclooctatetraene
isn't even conjugated. So it looks like
it has alternating single and double bonds
in this dot structure, but it behaves like
isolated double bonds, like four different
isolated double bonds. And it's not aromatic. So let's see if we can analyze
the reasons for this reaction here. And so we're going to
just real quickly review the criteria to determine if
a compound is aromatic or not. So a compound or ion
is aromatic If it contains a ring of continuously
overlapping p orbitals, and also has 4n plus 2, where
n is an integer, pi electrons in the ring, which
is Huckel's rule. So here is my
cyclooctatetraene molecule. And if I count my
pi electrons, I can see there are
a total of eight pi electrons in this molecules. So eight pi electrons. And each carbon in
cyclooctatetraene is sp2 hybridized. So each carbon has
a free p orbital. Now the fact that
cyclooctatetraene has eight atoms
in the ring, means that there's a little bit of
angle strain in this molecule. So one possible confirmation
for the molecule to adopt is what's called a
tub confirmation. So you can see these two carbons
can swing up on either side to adopt a tub confirmation. Now if each carbon in the tub
confirmation is sp2 hybridized, I could draw a p orbital on each
carbon in the tub confirmation here. So when I do that, I'll
get this as a picture. Now the problem is, it's a
little difficult for the p orbitals to overlap. So it might be easy for these
guys to overlap right here, but because of the
tub confirmation, it'd be hard to get
overlap of these orbitals. And so it turns out that
this is the reason why the molecule acts like
it's not conjugated. It's because it does
have p orbitals, but they can't really overlap
in the tub confirmation. And so this violates
the first criteria for a compound to be aromatic. And therefore we say
that cyclooctatetraene is non-aromatic. So it's not an aromatic because
it violates the first criteria. It does not have a range of
continuously overlapping p orbitals. The p orbitals don't
really overlap very well in the tub confirmation. What if cyclooctatetraene
adopted a planar confirmation. So we're just going to pretend
like cyclooctatetraene adopts a planar confirmation down here. And once again, each
carbon is sp2 hybridized. So each carbon is going to
get a p orbital like that. And so we have a total
of eight carbons. So eight p orbitals. So eight atomic orbitals. So let me go ahead
and write that here. So we have a total of
eight atomic orbitals for cyclooctatetraene. And according to MO theory,
those eight atomic orbitals are going to give us
eight molecular orbitals. So the atomic orbitals
are going to cease to exist, and give us
eight molecular orbitals. Drawing those eight
molecular orbitals would be way too
much for this video. So we're not going to
actually draw them, but we are going to show where
they are in terms of energy using our frost circle. And so this is what we
saw in the last video. So how to draw a frost circle. I'm going to go ahead and
put a line through the center of my frost circle to help
me draw the polygon in here. So what kind of a
polygon do I draw? Well, I have an
eight-membered ring, so I'm going to draw an
eight-sided polygon here. I'm going to start
from the bottom here. So I'm going to attempt to draw
an eight-sided figure in here. So it would be
something like this. Now remember, when you are
drawing your frost circle and you're inscribing
your polygon, the important thing
is where the polygon intersects with your circle. And every point where
the polygon intersects with your circle represents
a molecular orbital. And so I can see
that I would have a total of eight
molecular orbitals, because I have eight points of
intersection between my polygon and between my circle. And again, the nice thing
about a frost circle is it shows you the relative
energies of your eight molecular orbitals. So I would have three
bonding molecular orbitals, which would be the
ones down here. So these three points
of intersection will give you the
relative energies. And so I have three
bonding molecular orbitals. And then up here
at the top, I also have three molecular orbitals. But these are my antibonding
molecular orbitals. Those are higher energy. And my two points
of intersection that are right on
the center line here, represent two non-bonding
molecular orbitals like that. So when I fill my
molecular orbitals, again it's analogous to
electron configurations. I have a total of
eight pi electrons that I need to worry about
for a planar cyclooctatetraene molecule. And so I can go ahead and start
to fill in my pi electrons like that. So that takes care of six
of them and I have two more. And since this is analogous
to electron configurations, I'm going to follow
Hund's rule and not pair up my electrons
in an orbital here. So that represents my
eight pi electrons. And since I have
unpaired electrons, I have two unpaired
electrons, that predicts a very
unstable molecule if it were to adopt a
planar confirmation. And if I think about in
terms of Huckel's rule, I know it doesn't
follow Huckel's rule. Huckel's rule is 4n plus
2, where n is an integer. And the two comes
from the fact that I have this orbital down here. And I do have 4n right here. But I don't have 4n, where n
is an integer for these two electrons up here. And so this is where
it breaks down. And so I have a total of
eight pi electrons, which does not follow Huckel's rule. And so because the number
of electrons is incorrect, this molecule is
definitely not going to adopt a planar confirmation. And so cyclooctatetraene
has a tub confirmation, and not planar. It is not aromatic. It is considered
to be non-aromatic because of the violation
of the first criteria. But it is possible to
react cyclooctatetraene. It's possible to oxidize it. And so let's see what
happens when we do that. So if we take cyclooctatetraene
and we oxidize it. So it's going to
lose some electrons. So I'm going to say that these
pi electrons are going to stay. And we're going to lose the
pi electrons on the left. So if I take away a bond
from these two carbons that used to have that
double bond there, they're going to be
positively charged. And so I could draw a
resonance structure for this. I could move these
electrons over here. And so if I go ahead and show
that resonance structure, then this carbon still
has a plus 1 charge. And the other positive charge
moves over here to this carbon, like that. And you could continue
drawing resonance structures for this molecule. I am not going to do that. I just want to show you that the
positive charges are spread out throughout the entire ion here. And so one way to represent
that would be to just show the electrons are spread out
throughout this entire ion. And the whole thing has a
2 plus charge like that. And so when I
analyze this dication that I got from
cyclooctatetraene, I realize that all the
carbons are sp2 hybridized. So if I look at these, my
carbocations those are sp2 hybridized. Everything with a double
bond on it is sp2 hybridized. And so I have eight
sp2 hybridized carbons. And so each one of those
sp2 hybridized carbons has a p orbital. And I also have
six pi electrons. I have two, four,
and six pi electrons. So six pi electrons
follows Huckel's rule. And so this ion turns
out to be planar. So it actually does
look like this up here. And so there's opportunity
for those p orbitals to overlap side by side. And so this ion actually
fulfills the first criteria. It contains a ring of
continuously overlapping p orbitals. And when you analyze
the second criteria, it has six pi electrons. And so it would fill the
bonding molecular orbitals. It no longer has these
two electrons up here. So it has six pi electrons. It fulfills Huckel's rules. So there's a total of 6 pi
electrons for this dication. And so this ion is
said to be aromatic. So this is an aromatic ion. It fulfills both of the
criteria for it to be aromatic. So it's extra stable. And that's the reason
why it turns out to be planar,
because it has eight carbons like cyclooctatetraene. And so because of
that number, it has some strain that
it has to overcome. So it would like
to turn into a tub to overcome some of that strain. But the fact that it's
a planar dication, means that there must be
some sort of extra stability in that ion that's
forcing it to be planar. And that extra stability
is due to the fact that it is aromatic. And so this ion has been
proved to be planar. So this video is just an
overview of cyclooctatetraene, why it itself is non-aromatic. But if you turn
it into a cation, it can be aromatic,
which is further proof for the concept of
aromatic stabilization.