Main content
Organic chemistry
Aromatic heterocycles I
The aromaticity of heterocycles (rings containing one or more non-carbon atoms). Created by Jay.
Want to join the conversation?
- How do you tell if a lone pair will be localized or delocalized?(16 votes)
- From my Ochem textbook: if the heteroatom is connected to its neighbors by single bonds, it's possible for one lone pair on the heteroatom to delocalize (as seen in thiophenes, furans, and pyrroles). If the heteroatom is doubly bonded to either of its neighbors, the lone pair is in an sp2 orbital and cannot delocalize.(11 votes)
- what is difference in aromatic , non aromatic and anti aromatic ?(4 votes)
- Aromatic: Ring of overlapping P-orbitals, planar molecule, 4N+2 pi electrons (completely filling MO bonding orbitals with no unpaired electrons).
Anti-Aromatic, Ring of overlapping P-orbitals, planar molecule, 4N pi electrons (leaving two unpaired and very reactive MO orbitals).
Non-Aromatic: If neither of the above are true.(9 votes)
- Is it because oxygens of thymine are negatively charged,it acts as a base?(3 votes)
- Yes, although the electrons originally came from the N atoms.(5 votes)
- When analyzing heterocycles in general, as long as a neutral atom with lone electron pairs, like N, has resonance where the electrons move to another atom without becoming a bond within the ring, they will always be delocalized?(3 votes)
- Delocalized electrons are any electrons that can participate in resonance. If drawing resonance structures and a lone pair cannot be validly moved, then that lone pair is localized. Certain electron withdrawing substituents work to delocalize electrons that were localized, which is described in the example with thymine.(1 vote)
- Why is it that pyridine has a localised lone pair on N while otherwise on pyrimidine?(1 vote)
- I think that you are mistaken. Both pyridine and pyrimidine have localized lone pairs on N. The electrons are in sp² orbitals, so they cannot be delocalized into the π system.(4 votes)
- So why is thymine aromatic if the major resonance structure is not? I understand that you can draw an aromatic resonance structure, but why would that make it aromatic?(2 votes)
- 1. in fact, the major resonance structure in thymine is the rightmost one with 3 double bonds at the end of the video. because it has the lowest energy and thus is most stable. since it has the largest number of double bonds, which have lower energy than single bonds
2. in other words
a. stability: double bonds > single bonds
b. # of double bonds: right(3) > middle(2) > left(1)
c. major to minor resonance structure: right > middle > left (more stable to less stable)
3. in sum, we get the total resonance structure as weighted sum of each contributor. put the calculation simple, 3/6*right + 2/6*middle + 1/6*left = total resonance structure of thymine
and now you see why we consider thymine as an aromatic molecule (mathematically, it is more than half-aromatic)(1 vote)
- Why are they delocalized? 7:36
I think it's because the lone pair is in a p-orbital as it looks that way when you draw out the electron config.(1 vote)- It is because of the electron-withdrawing nature of the oxygen atom. The oxygen atom pulls the electrons of C=O bond towards itself resulting in a positive charge on carbon. The lone pair of Nitrogen try to get delocalized so that this positive charge on carbon gets reduced.
You are right in saying that lone pair are present in a p-orbital but then they were present in p-orbital in the nitrogen of pyridine also. And in pyridine, they were localised. That's because they were not required to participate in resonance (the pyridine ring has enough pi-electrons for resonance to take place.)(3 votes)
- How did u get SN=2+1=3 on thymine?(1 vote)
- The steric number of an atom is the number of atoms bonded to that atom plus the number of lone pairs on that atom. Both N-1 and N-3 are directly attached to three atoms (C, C, and H), and they have no lone pairs.
∴ For each N atom, SN = 3 + 0 = 3.(2 votes)
- Is pyrimidine an aromatic compound or not?explain(1 vote)
- it is aromatic, as it has a continuous system of overlapping p orbitals. The nitrogen atoms of pyrimidine both have lone pairs that cannot be delocalized into the ring. Since there are 3 electron domains the nitrogen is sp2 hybridized and thus there is an extra p orbital. Because of these p orbtials chilling on the nitrogen, the 6 electrons in the pi bond system have the ability to move around, while the lone pairs on t e nitrogen atoms are forced to stay put. Thus it is aromatic.(2 votes)
- what is homocyclic compound(1 vote)
- Rings made of all the same atom, generally carbon. You don't need to ask this 3 times!!(1 vote)
Video transcript
In previous videos,
we've already seen that benzene is aromatic
because it fits the following criteria. Benzene contains a ring of
continuously overlapping p orbitals. So each of the six
carbons in benzene-- each of those six carbons
has a double bond to it. So each of those six
carbons is sp2 hybridized, which means that each of those
carbons has a free p orbital. And because benzene
is a planar molecule, those p orbitals can
overlap side by side and allow for delocalization
of the pi electrons in benzene. So if we count the number
pi electrons in benzene, we can see there are
two, four, and six. So six pi electrons
fits Huckel's Rule, which is the second
criterion, which says that the ring has to
have 4n plus 2 pi electrons. In this case, n is equal to 1. So 4 times 1 plus 2 gives us 6. So six pi electrons for benzene. Just to remind you, n can
be equal to 0, 1, 2, 3, or any other whole number. And that's called Huckel's Rule. So you need Huckel's
Rule pi electrons in the ring for a
compound to be aromatic. If we look at the
pyridine molecule, pyridine is an
analog to benzene. The only difference
is that pyridine has a nitrogen in the ring
instead of one of these carbons right here. So we say that pyridine
is a heterocycle. A heterocycle is
a cyclic compound that contains a
heteroatom in the ring. A heteroatom is any
atom other than carbon-- so something like nitrogen,
oxygen, or sulfur. And heterocycles cycles
can be aromatic, too. So let's go ahead
and analyze pyridine in a little bit
more detail here. So here's the dot
structure for pyridine. And we'll start by looking
at the carbons on pyridine. So pyridine has five carbons. Each of those carbons
has a double bond to it. So each of those carbons
is sp2 hybridized, meaning there's a free p orbital
on each of those five carbons. I'm just going to sketch in
those p orbitals on those five carbons like that. Let's analyze the nitrogen,
and let's figure out the hybridization of
this nitrogen atom. The best way to do
it is to figure out the Steric number of
this nitrogen atom. And so the Steric number
is equal to the number of sigma bonds plus number
of lone pairs of electrons. So watch an earlier
video if you'd like to see how to do Steric
number in more detail. So we could say this
is the sigma bond. We could say this
is a sigma bond. And then we could say
there's one pair of electrons on that nitrogen. So the Steric number
is equal to the number of sigma bonds, which
is 2, plus number of lone pairs of
electrons, which is 1. And so the Steric
number is equal to 3. So this nitrogen must have
three hybrid orbitals, and therefore it's
sp2 hybridized. So it has three sp2
hybridized orbitals, and therefore, one p orbital--
so an unhybridized p orbital. So this nitrogen is
also sp2 hybridized, and so we can go ahead and
sketch in the p orbital like that. And if we look at the number
pi electrons in pyridine, there's two, four,
and six pi electrons. So that fulfills Huckel's Rule. So there are six pi electrons. And we can see that the
pyridine molecule is a ring of continuously
overlapping p orbitals-- these p orbitals can
overlap side by side-- and those six pi
electrons can be delocalized throughout the ring. And so since this meets
both of the criterion, pyridine is an
aromatic molecule. So it has some extra
stability associated with it. Now, this lone pair of
electrons on this nitrogen, that lone pair of
electrons occupies an sp2 hybridized orbital. So we said this
nitrogen's sp2 hybridized, which means it has three
sp2 hybrid orbitals. So one of those sp2
hybridized orbitals formed a bond with
this carbon over here. One of them formed a bond
with this carbon over here. And the last sp2
hybrid orbital actually contains that lone
pair of electrons. So the lone pair of
electrons on that nitrogen does not participate
in resonance. That lone pair of electrons
is localized to that nitrogen. And so any time
you see a situation like pyridine where
you have a nitrogen with a lone pair of electrons
and some electrons already participating in
resonance-- so those would be the electrons in magenta
here-- the electrons in magenta participate in resonance. So the electrons in blue cannot
participate in resonance. They are localized to
this nitrogen atom. OK. So we've seen that
pyridine is aromatic. Let's go ahead and do an example
that's similar to pyridine. This is pyrimidine So
let's see if we can analyze the pyrimidine molecule
the same way that we analyzed the pyridine. So once again, if I start
with my carbons here, each of these carbons is
connected to a double bond. So I have four carbons,
and therefore each carbon is sp2 hybridized. I can go ahead and sketch
in a p orbital on each of my sp2 hybridized
carbons like that. When I study the
nitrogens in pyrimidine, I can see it's the
exact same situation that we had in pyridine. So I can see that there's
a sigma bond here, a sigma bond here, and
a lone pair of electrons here, like that. And so I can see that this
nitrogen is sp2 hybridized. And I can see that
these pi electrons here are going to be
participating in resonance. So for that nitrogen,
it's sp2 hybridized. It has a free p
orbital, so I can go ahead and draw in
the p orbital there. And I know that the lone
pair of electrons in blue-- since this nitrogen
is sp2 hybridized-- that lone pair of
electrons is going to occupy an sp2
hybridized orbital. It's the exact same
situation for this nitrogen. There's a sigma bond. There's a sigma bond. We have a lone pair of
electrons on that nitrogen. And then we also have some
electrons already participating in resonance. And so this nitrogen
is also sp2 hybridized. I can go ahead and
draw a p orbital on that nitrogen, which means
that lone pair of electrons is not gonna participate
in resonance. That lone pair of
electrons is going to occupy an sp2
hybridized orbital. It's going to be out
to the side like that. And so for pyrimidine,
once again, I have a total of
six pi electrons. And those six pi
electrons are going to be delocalized as the
p orbitals overlap side by side in your ring. And so pyrimidine
is also aromatic. It meets the criteria for it. And the lone pair of
electrons on those nitrogens, those lone pairs are
localized to those nitrogens. All right. The pyrimidine general
structure is actually very important in biochemistry. So when you study biochemistry,
you'll see how important it is. And here's an example. This is the thymine
molecule, which is, of course, found in DNA. And you'll always
see in textbooks that thymine has
a pyrimidine ring. But at first, it's
not so obvious that a pyrimidine ring
is present in thymine. Because if I look at the
nitrogens in thymine-- we'll start this
nitrogen up top here-- I can see that this nitrogen
has three sigma bonds to it and one lone pair of electrons. So three sigma bonds--
so the Steric number would be equal to 3 sigma bonds
plus 1 lone pair of electrons. The Steric number
should be equal to 4, which implies four
hybrid orbitals, which would mean that that
nitrogen is sp3 hybridized. And if it's sp3 hybridized, you
wouldn't have any p orbitals to participate for aromaticity. And so this must
not be the case. There must be a way to see
a pyrimidine ring here. And the answer is because
this nitrogen is actually not sp3 hybridized. It actually has a
lone pair of electrons that are delocalized, and not
localized to this nitrogen, meaning we can draw
a resonant structure for the thymine molecule. So this lone pair of electrons
right here in this nitrogen are not localized
to that nitrogen as we saw in the
previous dot structures. Those electrons can
move in here to form a pi bond between the
nitrogen and that carbon. That would, of course, push
these electrons in here off onto this oxygen. So we can go ahead and
draw a resonance structure. So let's go ahead and put
the nitrogen in our ring. And let's go ahead and draw in
the rest of our ring like that. And so that lone
pair of electrons moved in to form a double
bond between that nitrogen and that carbon. So that's our situation now. And for the top oxygen here, it
had two lone pairs of electrons but it picked up one more
lone pair of electrons, giving it negative
1 formal charge. This nitrogen is still
bonded to another hydrogen, and we can go ahead and draw
in the rest of the molecule as well. So there is our resonance
structure for thymine. Now let's go ahead and
analyze the nitrogen after we drew the
resonance structure here. So if I want to figure out the
Steric number for this nitrogen now, I can see that
there's a sigma bond here, there's a sigma bond here,
and there's a sigma bond here. And now no lone pairs of
electrons around this nitrogen. So now the Steric
number would be equal to 3 plus 0, which
is, of course, equal to 3. So the Steric number of three--
we can say this nitrogen is sp2 hybridized. And so it has a p orbital now. And the lone pair
of electrons that was in the nitrogen over here--
I'm going to go ahead and put those in magenta-- they're not
localized to that nitrogen. They're actually delocalized. And that lone pair
of electrons can now participate in resonance. But we still don't have the
exact pyrimidine structure here. And so we can draw yet
another resonance structure. So we can do the
exact same thing with this lone pair of electrons
down here on this nitrogen. So we can look at the
other nitrogen now, and we can do the
exact same thing. So at first thought,
it might look like that lone pair of electrons
is localized to that nitrogen, but it's not. It's actually delocalized
because of the resonance structure that we can draw. So pretty much the exact
same thing we did before. So let's go ahead and
draw in our ring here. So we have our two
nitrogens in our ring. This nitrogen is bonded
to a hydrogen right here. The lone pair of electrons
now moves in to here to form a double
bond, a pi bond. And this oxygen
had two lone pairs of electrons-- it picked up
an extra lone pair, giving it negative 1 formal
charge, like that. And also, we can draw in the
rest of the molecule here. So double bond methyl group. We have here our
negatively charged oxygen up here-- so negative
1 formal charge. And over here on our nitrogen,
we have our hydrogen, and we have this in here. And I forgot to give a plus 1
formal charge on this nitrogen on this resonant
structure right here. So there's a plus 1 formal
charge on this nitrogen. Obviously, it still has a plus
1 formal charge over here, and we have a plus
1 form or charge over here for this nitrogen. But if we focus in
on both nitrogens, this nitrogen is now in
the exact same situation as this top nitrogen. They're both actually
sp2 hybridized with a Steric number of two. So they have a p orbital. Each one of them
has a p orbital. And we now can see a little
bit better that there actually are six pi electrons
that can be delocalized throughout this ring. Now maybe it's a
little bit more obvious that the thymine molecule
contains the pyrimidine ring, and therefore it is aromatic
and has some extra stability associated with it. So sometimes drawing
resonance structures will allow you to see
the possible aromaticity or extra stability
in a molecule. So this is an example
of a biological aromatic heterocycle-- so
a molecule found in biochemistry, which is
obviously extremely important, that we can analyze using these
simple concepts of aromaticity in organic chemistry.