Main content
Class 10 Physics (India)
Course: Class 10 Physics (India) > Unit 4
Lesson 3: Magnetic field due to current carrying loops and solenoidsMagnetic field due to current carrying loop
Let's explore the magnetic field generated due to the current carrying loop. The field pattern might be familiar to you. Created by Mahesh Shenoy.
Want to join the conversation?
- Atwe see that the iron filings are arranged in a straight line, does that mean that in a circular magnetic electric circuit and particle placed exactly in the middle inside the circle would be held in place and not experience any force? 1:40(6 votes)
- the current was not strong enough the fillings to get attracted.But if it were then you would see the force
hence the middle would exp the force(4 votes)
- will a magnetic field in real life be in the form of a horizontal stack of the pattern of lines we see in the video? (one pattern behind the other)(2 votes)
- In real life the magnetic field will be in a 3d doughnut shape with one straight line in the centre and multiple lines surrounding it which will bend slightly more than the previous one.(4 votes)
- In the magnetic field the lines are coming north to south but the straight line passing south to north why?(2 votes)
- Just as in a bar magnet, the field lines outside the bar magnet loop from north to South Pole and the field lines inside the bar magnet go from south to north thus completing a circle of sorts. We can see this figure at7:39(3 votes)
- Hey everyone, so as Mahesh describes atin this video. The direction of the magnetic field "Inside the loop is upwards, outside the loop is downwards." 5:50
My question, is this just in regards to the current travelling in this direction as shown. If the current was set up to be travelling in the opposite direction, would the magnetic fields direction be reversed too "inside the loop is downwards, outside the loop is upwards"
Hope this is clear to everyone. Thanks again to Mahesh! really enjoying the examples, Khanacademy is a great resource(2 votes)- Ah.. Just watch the next video on Solenoids. For reference, Mahesh does mention switching the poles of the electromagnet by reversing the current. Brilliant!(3 votes)
- why is the wire coiled so much?? Couldn't it be used as a single coil(1 vote)
- You mean the wire in that experimental picture? Well it's because the more coiled your wire is, the more current there is, so the field becomes stronger. So when we need a stronger field, we use a highly coiled wire as in solenoids, which we'll be learning after a few videos.
Here's a video on solenoids which is a direct application of your question. (for your answer, go to 4min 10sec)
https://www.khanacademy.org/science/in-in-class-12th-physics-india/moving-charges-and-magnetism/x51bd77206da864f3:solenoid-torroid/v/magnetic-fields-through-solenoids
Hope I have answered your Question, if I'm wrong, please do tell!
Happy learning and never stop questioning.😀(2 votes)
- At, the loop is connected to the mains via two other Copper wires... Why aren't they creating a magnetic effect? 1:51(1 vote)
- To form a magnetic field,they'd have to pass through the glass slab.
They go over the glass slab, since it's in between the slab and iron filings,there's no magnetic field seen. However, I'm quite sure if you sprinkled iron filings around those copper wires they'd show concentric circles, as they are current carrying straight conductors.
Hope that helps!
Do let me know if I'm wrong(1 vote)
- At, the magnetic field around the circular loop resembles that of a bar magnet. So, do the magnetic field lines merge at the centre? 7:22(1 vote)
- NO they dont merge but they come very close to each otoher and hence increasing the field strength(1 vote)
- why the loop is going up and down(1 vote)
- so that it passes through the glass slab with iron filings, if it isn't done this way the iron filings won't show the magnetic field(1 vote)
- How do you calculate the magnetic downwards force of a current-carrying solenoid that is perpendicular to a magnetic field from two neodymium magnets?(1 vote)
- How can we clasp a wire that has current flowing through it without having access to any props?(0 votes)
- Sorry for the late answer but if you have seen previous videos we use our Right Hand Rule(1 vote)
Video transcript
- [Narrator] In a previous
video, we saw that a straight wire carrying
an electric current produces magnetic fields which
are in concentric circles. In this video, we will explore what do the magnetic fields lines look like for a circular loop of wire carrying an electric current. And a small spoiler
alert, you may be familiar with these field patterns. So to figure out the field
pattern experimentally, all we need to do is
sprinkle some iron filings on top of it. And that's what we'll do first. In this clip, we have
copper wires which are in a circle. And notice that these are
made to pass through a glass lab. Inside this glass lab
we have iron filings, and so when we pass electric
current through this it goes through the loop,
generates a magnetic field and then the iron filings
will arrange themselves and they will reveal the pattern to us. So here it is, we have
done the connection. And now once we click on,
once we close the circuit, electric current will
run through and we'll see a pattern forming. And there it is! You can already see a pretty
good pattern formed over there. Wow! That's beautiful, isn't it? Look at that! All right. So we can see
that close to the wire the field is in circles. But as you go farther away from the wire, as you move towards the center, notice the circle tends to become larger, you tend to get a bigger curve. Look at the curve, it tends to get bigger. It tends to get flatter. And then as we move towards
the center of the loop, notice it's pretty straight over here. Pretty straight. So now, let's try and
figure out why the field looks like this. And we'll see that this is
actually a familiar field line. We've seen this before. So here's our copper ring. It's a circle but we are
looking at it from an angle like this. And so it looks oval to us. And let's say we put a
current through it in this particular direction. So the current is flowing this way, into the board, goes from the back, outside the board, comes out from the front, and so on. Just like this, goes here into the screen, comes out from the back, comes out, and then goes on in circles. How do we now figure
out the direction of the magnetic field everywhere is the question? Well in a previous video we have seen, that if we have straight wires, then we can use the right-hand thumb rule. Basically take your right
hand, clasp the conductor, so that the thumb points in
the direction of the current. Then four encircling fingers
will give us the direction of the magnetic field. Encircling that straight wire. And if you need more clarity
on this, we've discussed this in great deal in previous
videos so feel free to go back and watch that video. But here we don't have a straight wire. We have a circle. What do we do then? How do we use our right-hand
thumb rule over here? Well, all we have to do
is clasp each section of the wire separately and figure out what the magnetic field looks
like around that section. So, let's take an example. Imagine I want to know what
the magnetic field looks like somewhere over here. And I'm choosing this section
of the wire because it's easier to draw the magnetic
field on the screen as you will see. So let's say this section,
I want to know what the magnetic field looks
like around that section. And, how do I do this? Well, I have to clasp my right
hand through this section so that the thumb points in
the direction of the current. But what direction is
the current over here? Well, since the current is
moving to the right here, it enters into the screen
over here and so my thumb should point into the screen. So let's see what it looks
like if I were to clasp over there, that's what
it would look like. You can't see my thumb because
my thumb is pointing into the screen. And now the four encircling
fingers give me the direction of the magnetic field around that section. And notice the encircling
fingers are running clockwise. And so I know that around
that section, the magnetic field is going to be clockwise. Similarly, if I consider now this section, again, I am choosing
that section because it's easier to draw the
magnetic field over there. You'll see that the current
is coming out of the screen over here, it comes out
and then goes to the right. So if you're to clasp
this section of the wire, can you imagine what it will look like? Well, this time with my right hand, it should always be right hand, my thumb should now point
outwards, outside the screen. So if you clasp it with my
right hand, this is what it would look like. And now notice the four encircling fingers are going anti-clockwise so
I know the magnetic field around that section is
going to be anti-clockwise. So this explains the
circular fields over here. Now, to figure out the
magnetic field everywhere else, we don't have to keep doing
this over and over again and make our job tedious. Instead there is an
easier way to guess what the field might look like. Here's how I like to do it. If you look over here, it's
telling us that the field inside the loop is pointing upwards. Outside, downwards. Same thing over here. Even the field this way is
telling us inside the loop is upwards, outside the loop is downwards. In fact, regardless of
which section you clasp, you will find the field inside will be up, and outside will be down. So to convince you, let me
show you two more sections that we have clasped. Here they are. Use the same right-hand thumb rule, thumb points in the
direction of the current. You can clearly see the
four fingers are telling us inside the field is
upwards, outside downwards. Inside, upwards. Outside, downwards. And so from this, we know
the fields should start over inside should be up, outside should be down, and they should be closed
loops, we have studied that. Therefore, all the field
lines should go like this. Should go like this. Can you guess that? Can you see that now? Can you imagine it? And so, if we were to
draw the complete picture, let me get rid of these
additional hands so that we can look at these
field lines properly now. If we look at all these
field lines, this is what it would look like. So notice all of them,
the field is inside is up, and they will tend to go down outside. And this is exactly what
we got in our experiment. The last thing I want to discuss is, is this field look familiar to you? And for that, let me
zoom out a little bit. All right, here it is. Look at this beautiful field pattern. What does this resemble? Well, this field looks very
similar to that created by a tiny bar magnet. We've seen what the field
carried by a bar magnet looks like, it looks somewhat like this. And look at these two field patterns. Don't they look very
similar to each other? Here also the field lines start from here, and they continuously keep
looping back like this. Here also the field lines start from here, and they continuously keep looping back. Small difference you
might see is over here, the field is a little flatter, and over here, the field is more round. But if this bar magnet was very small, if this bar magnet was very tiny, then notice we would get
a very, very, similar field like this. So this means, a current
carrying loop resembles a tiny bar magnet. And we can now say that
this side represents the north pole of that bar magnet, and this side over here
represents the south pole. The poles are not really
there, but if you think of it as a bar magnet we
can treat it this way. And this is pretty
awesome because now we've learned how to create our
own artificial bar magnets! Well, tiny bar magnets. And so in this video, we
learned how to figure out the magnetic field around
a current carrying loop using the same right-hand thumb rule. And eventually we saw that
a current carrying loop is equivalent to a tiny bar magnet.