If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Reproductive cycle graph - Follicular phase

Understand the complex interactions of hormones in the female reproductive cycle. This video explains the ovarian cycle, detailing how FSH, LH, Estrogen, Progesterone, and Inhibin work together to control follicle growth, ovulation, and endometrium changes. Created by Vishal Punwani.

Want to join the conversation?

  • blobby green style avatar for user nikki248
    He says that GnRH is released from the anterior pituitary, but doesnt the hypothalamus release it? and then GnRH causes the secretion of FSH and LH from the anterior pituitary?
    (9 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Marc Zucker
      I watched the video and I didn't pick up on the part you're talking about where he says GnRH is released from the anterior pituitary (@ nikki248). At like he refers to FSH and LH as "gonadotrophic hormones" (meant to say, "gonadotropic") and then says that these hormones are released from the anterior pituitary. I think this may be the part you were referring to. So LH and FSH are referred to as gonadotropic hormones. So what he is saying about the gonadotropic hormones, AKA LH and FSH, and what you (nikki248) said about FSH and LH are the same—you're both saying they are released from the anterior pituitary. GnRH (which I don't think he mentioned explicitly in this video, but I could be wrong) is gonadotropic-releasing hormone. This is released from the hypothalamus, like you said also (@ nikki248). If you think about the name of GnRH you will realize we have been referring to LH and FSH as gonadotropic hormones the whole time. Gonadotropic-releasing hormone is itself a hormone, that stimulates the release of the gonadotropic hormones, AKA FSH and LH, from the anterior pituitary. I hope this wasn't confusing or repetitive and actually helped clarify.
      (8 votes)
  • marcimus pink style avatar for user siqi chen
    Why the increase in estrogen cause pituitary to secrete more FSH and LH
    (6 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user adedominicis8
      Once a critical level of estradiol is reached (200 picograms/mL) it switches from negative feedback to positive feedback on the anterior pituitary causing upregulation (increased #'s) of GnRH receptors. More GnRH receptors on the anterior pituitary means increased release of FSH and LH (the ovulatory surge) which triggers rupture of the ovarian follicle and release of the oocyte. Hope that helps!
      (13 votes)
  • blobby green style avatar for user Aedqyonan
    Oral contraceptive pills (OCPs) are estrogen and progesterone preparations and they work by preventing the release of FSH and LH which in turn inhibits ovulation. My questions are: is the dosage of these pills within the limit where estrogen is utilizing the negative feedback ( before reaching the threshold and positive feedback takes place which will lead to ovulation and non-functioning pills)? Secondly, what is the role of the placebo pills that are taken in the last week?
    Thanks
    (3 votes)
    Default Khan Academy avatar avatar for user
    • mr pants teal style avatar for user Emily
      Not sure about the first question, but the second I can help with. I am on an OCP to GIVE me periods because I am so irregular. Since the pills do contain estrogen, when you go off them taking the sugar/placebo pill, you will begin your period. Because in a normal woman's cycle, right before the period, your estrogen levels drop. If you were pregnant, your estrogen levels would rise and you would not have your period because of that rise.
      (1 vote)
  • duskpin ultimate style avatar for user cx1
    What is inhibin exactly and where is it released from? Is it a hormone released from anterior pituitary gland or a hormone from the ovary? If I understand correctly it inhibits FSH?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Joanne
      It is a protein hormone made by the testes and ovaries along with the sex hormones and you are right, it inhibits FSH that is released by the anterior pituitary gland. Testosterone in the male and estrogen ,progesterone production in the female are hormones released due to the hypothalamus releasing GnRH to the anterior pituitary, causing it to release FSH and LH. FSH and LH go into the blood to the gonads and cause the production of gametes and sex hormones. https://en.m.wikipedia.org/wiki/Activin_and_inhibin
      (3 votes)
  • marcimus pink style avatar for user emilynsaa
    where could i get a copy of this graph?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Vaishnavi Tata
    You say that when we're releasing a really high amount of estrogen, a paradoxical event happens and the brain releases even more FSH and LH. Why? What causes that paradoxical event to happen that the normal negative feedback loop is broken?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers sapling style avatar for user eleazar.uste.oso
    Is it bad for someone not to be punctual on their menses?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user axm803
    At around he starts to talk about estrogen becoming a negative feedback regulator of fsh and lh. when secretion of those are inhibited wouldn't there be a slight dip in estrogen as well? Or are the granulosa cells creating so much estrogen that the dip wouldn't be significant?
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] So we know that a female's eggs develop in her ovaries and that as they sort of develop, we get these fluctuations in female sex hormones released from the ovaries. So to be more specific, we get Estrogen, we get Progesterone, and we get Inhibin released from the ovaries while the eggs are developing. So that's all fine and good, but why exactly is this happening? What exactly are these hormones doing in the female body? And why do their levels change? Well, there's this handy graph that we'll just refer to as the Ovarian Cycle Graph that I guarantee you'll see if you're studying female reproductive physiology. It's actually really quite helpful in understanding and visualizing what exactly is going on in the body during each reproductive cycle. So this is sort of the skeleton of the graph here. Just the axes. And I'll orient you to the axes first, and then we'll look at what information the graph actually contains. So the x axis here is time. And time in this situation is sorta constricted to 28 days because that's how long each reproductive cycle is. And by the way, it says "28/0" here because 28th day is the same day as the zeroeth day, if that makes sense. In other words, once you reach day 28 of one cycle, you're on day 0 of the next cycle. There's no sorta gap in between. And remember ovulation happens here at day 14. So that's the x axis. And before we talk about the y axis, I'll just quickly mention that we're gonna split the reproductive cycle into two main phases, the Follicular Phase and the Luteal Phase. And you'll see why they're called that soon. So on the y axis, there's a few different things that we'll sorta track at the same time. And the reason that they're all here on the y axis at the same time is because they're all related. They happen at the same time in the body, so we want to see them all at once on one graph. They're even listed in a sort of order on this graph. So first at the top, we've got the Gonadotrophic Hormone Levels, FSH and LH. And remember these are released from the anterior pituitary gland in the brain. And these hormones affect the development of follicles in the ovarian cycle. And these hormones affect the development of follicles in the ovarian cycle. I'll actually look at the Ovarian Cycle just below here. And as the follicles develop, they cause the release of hormones from the ovaries. So the hormone levels are here below. And last, we have stages of the Uterine Cycle, which are influenced by the levels of sex hormones released from the ovaries. And broadly, the stages of the Uterine Cycle are Menses or menstruation, where the endometrial lining is shed, the Proliferative Phase, where a new layer of endometrium forms and grows or proliferates, and the last phase is the Secretory Phase, where the endometrium becomes ready for implantation by a fertilized egg. So even if there is no fertilization of the egg, the endometrium still gets ready just in case. And we'll talk about these phases a little bit more later on. And let me just quickly say that in pink up here in the Ovarian Hormones Levels, the pink here is Estrogen, the blue line underneath it is Inhibin, and the orange-y line is Progesterone. So those are the three ovarian hormones that we're going to be concerned with. So we've got this sort of logical step-wise setup here. And hopefully that makes it easier to remember what's going on. So for now, we'll just look at the first half of the graph, the Follicular Phase part of the graph, and we won't really worry about the Luteal Phase part of the graph just yet. We'll just get rid of that. So on day 0 here, the anterior pituitary gland is releasing some FSH and some LH. And you can see those baseline levels here. And we know that the FSH is stimulating growth of the follicle here. And you can see it growing as the days go by. And while it grows, its number of granulosis cells is increasing, right? The granulosis cells are represented by this purple color here. And we know the granulosis cells secrete Estrogen. So the amount of Estrogen in the blood is going up and up and up as these follicles grow. And to add to that, besides what FSH is doing, luteinizing hormone is making the thecal cells that surround the follicle produce a hormone called Androstenedione. Androstenedione is really, really similar in structure to Estrogen. And actually the granulosis cells get a hold of that Androstenedione and convert it to actual Estrogen. So the Estrogen levels are just going way up, and you can see that reflected here. So as the follicles grow, the Estrogen level is just going way up. And by the way, if we look down here at what's happening in the endometrium of the uterus, that's the inner lining of the uterus, we can see that we're in the Proliferative Phase. And it's called the Proliferative Phase because the increasing Estrogen levels that we see here are inducing a new layer of endometrium to form since the old one was shed in menstruation in the previous week. So that's what this Proliferation Phase is all about. So at this point some really interesting stuff starts to happen. So when the hypothalamus and the anterior pituitary gland in the brain start to sense that the levels of Estrogen are super high like this, they begin to release less FSH and LH. And you can see them dipping here. And that sorta makes sense, right? Because the point of releasing FSH and LH in the first place was to cause development of the follicles. And the follicles make the Estrogen so when the brain senses lots of Estrogen, it must mean that the follicles are developing, right? So it doesn't actually have to continue to release so much FSH and LH. That makes sense. So that's why we see these dips here in FSH and LH levels in the blood because the high Estrogen levels tell the brain to sorta reduce their production and release of these gonadotrophic hormones. But then it starts to get even more interesting. Our granulosis cells are just cranking out Estrogen at this point, and they actually start to produce two more hormones in higher amounts. They start to produce a bit of Progesterone, and they start to produce a hormone called Inhibin. And let me just say that there's two types of Inhibin, Inhibin A and Inhibin B, but we're just going to consider them as one thing for now, Inhibin. And Inhibin's role is to inhibit FSH release from the anterior pituitary. So you can kinda see here that as Inhibin starts to increase, FSH in blue here starts to decrease. And again, that's because Inhibin is stopping the anterior pitutary from releasing FSH. You might think that's the end of the interesting stuff. It gets even more interesting. Do you remember how we said that as Estrogen gets higher and higher, it stops the hypothalamus and the anterior pituitary from making more FSH and LH by a bit of negative feedback? Well, it turns out that if Estrogen reaches a super high level like up here, we'll say it reaches that super high level up here, it actually causes the brain to want to release more FSH and LH. It's sort of a paradoxical sounding event. So we reach such a high level of Estrogen that the brain tries to release this really, really high amount of FSH and LH. But on the graph here we only really see a high release of LH and not FSH. So, why is that? Aha! Remember earlier we said that our granulosis cells were releasing Inhibin, which reduces FSH release from the anterior pituitary? Well, look here. Our Inhibin amount is pretty high now, and that Inhibin sorta curtails the amount of FSH released from the anterior pituitary. But it doesn't really affect the LH that gets released. So the net effect is a huge release of LH from the anterior pituitary in an event called the Luteal Surge. And this LH that gets released, plus the still reasonably high amount of FSH that gets released, that sort of pushes development of the follicle to its final step, ovulation. And the egg you can see sort of popping out of the follicle here in the process of ovulation. And remember that happens at day 14 here. So that's the Follicular Phase and ovulation on the graph.