If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content
Current time:0:00Total duration:13:43

Video transcript

you may know that athletes and sports people have a lot more stamina compared to non athletes like me right because of the practice that they have but did you know that if you were to look inside their muscle cells because of all the practice they have developed something more in number their cells have something more in number compared to that of non athletes what exactly is that and why do they have that more in number how does that help them get more stamina to answer this question we need to find out exactly where inside the cell respiration takes place why because it's the respiration that gives us energy now in a previous video we've seen how cells can take glucose and break it apart to give us energy which is called respiration right and this can be done in the presence of oxygen which uses a lot of energy we call this as aerobic and it can be done in the absence of oxygen too where we get a little bit of energy this is called anaerobic respiration or fermentation but if this seems new to you or if you feel you need a refresher it will be a great idea to go back and watch that video on aerobic and anaerobic respiration this is explained in detail over there and I've also explained how to remember these equations and so if you feel you're comfortable with this great let's go ahead so these reactions are happening inside our cells right the question now is in exactly which part of the cell are these reactions taking place the problem in trying to answer that question is these are not one-step reactions okay there it takes multiple steps to do this for example over here it's not that oxygen just gets added to glucose and we get carbon dioxide directly there are multiple things happening in between which is not shown over here okay and guess what it turns out that some of these steps will take place in one part of the cell and other steps will take place in some different part of the cell so should we learn all the steps in between well no we don't have to there are many steps in between and we don't have to learn all them we will just learn the first step of respiration okay it turns out that regardless of which respiration you want to do whether you want to do aerobic or lactic acid fermentation or ethanol fermentation whichever you want to do the first step is common let me just move it a little bit to the right more and what is that first step you know the first step glucose gets broken into two pieces that's how I like to think about it glucose gets broken in two molecules and each of them are called pyruvate two molecules of pyruvate alright and in this process again because glucose is getting broken we get a little bit of energy so some energy is released again I'm writing that energy in small just to showcase that little bit of energy is released over here now pyruvate might be a very new world right so what exactly is this it's just a molecule just like how we have glucose pyruvate is another molecule and we will not look at what its formula is and all of that not needed just a little bit to give a little bit of it inside what it is glucose is a six carbon molecule right it has six carbons inside it turns out that pyruvate has three carbons inside it and that's why I like to think that glucose is broken into two parts okay but it's not exactly broken into two halves there are other reactants in between as well we don't have to worry about that in detail but this is the first step okay and we also give a name to this step this particular step is called glycolysis glycolysis you might hear this word a lot in respiration okay seems like a fancy word but you know what's telling us the word glyco is referring to glucose so this this over here means glucose and lysis means breaking so you can now kind of see what this means breaking of glucose and that's basically what's happening glucose is being broken into two molecules of pyruvate and when this pyruvate gets further broken in the presence of oxygen that's when we get this aerobic respiration and that's mostly what's happening inside your cells right now on the other hand if the pyruvate gets broken without oxygen then we'll get these reactions but one important difference between these reactions are when you break pyruvate in the presence of oxygen these reactions also release energy and that's why aerobic respiration releases a lot of energy on the other hand if we break pyruvate without oxygen that does not release energy so to release energy from pyruvate it has to be broken in the presence of oxygen and so now you can see that if you take the aerobic pathway we get energy when glucose is broken into pyruvate during glycolysis and we again get a lot of energy when pyruvate is further broken down and it's for that reason aerobic respiration is awesome because it gives you a lot of energy on the other hand if you take the fermentation pathway you see that energy is only released during the glycolysis part further when you break down pyruvate no more energy is released and that's why fermentation only gives you little bit of energy that was released during glycolysis and so now we can answer our original question where do these reactions take place well it turns out that the ones that do not require oxygen they happen in the cytoplasm of the cell and just to remind you what cytoplasm is if this is an animal cell let's say then this dotted stuff represents the cytoplasm this whole thing though the stuff that is outside of the nucleus but within the cell is the cytoplasm and that's where all the in aerobic stuff is happening the glycolysis happens in the cytoplasm and the fermentation are also happening in the cytoplasm on the other hand if we want aerobic respiration this part then that happens inside the mitochondria so if you want aerobic respiration once the glycolysis happens the cytoplasm the pyruvate has to enter into the mitochondria and then oxygen also has to enter into the mitochondria and that's where this reaction takes place and after the reaction takes place it's the mitochondria that will release all that energy all that energy and that is the reason why they say mitochondria is the powerhouse of the cell because it's the mitochondria that's releasing most of the energy needed for the cell by performing aerobic respiration and so now can you guess what organelles - the muscle cells of at least have more well if you guess mitochondria then you are absolutely right because the more mitochondria you have the more you can carry out these reactions simultaneously and the more energy that can be released whenever you want and so scientists have found that on average the cells the muscle cells of athletes have about twice as much mitochondria compared to the muscle cells of a non-athlete which means when you do regular practice one of the changes that you'll find inside your body is you will start developing yours muscle cells will start developing more and more mitochondria that's pretty cool right and so the energy which is released by these mitochondria can now be used up by the cell to perform all the activities right that makes sense right but guess what that's not what happens the energy released by breaking glucose is not used up by the cell then what happens well it turns out that that energy is stored in yet another molecule okay and that molecule is a pretty famous molecule it's called ATP and it stands for adenosine tri phosphate I don't have to worry too much about that lengthy name we'll just call it as ATP but that energy gets stored in that ATP and when I first learned this it didn't make any sense to me because let's go to a different screen to summarize what respiration is see in respiration we have glucose that said this is our glucose what do we do what do the cells do they break it open and release that energy but instead of using that energy what do they do they take that energy and store it in yet another molecule called a TP so basically they're transferring energy from glucose into ATP s in to smaller packets but why why are they doing that well that's because breaking glucose releases a lot of energy and cells do not need that much energy to carry out their function this is too much for them and it's for that reason they store it into smaller packets and then whenever cells want to perform any energy they just break ATP open and ATP will now have just the right amount of energy they need to perform their functions now to understand is even better think of energy as money then glucose would be like a large denomination like a 2,000 rupees note and ATP is like that smaller denomination like ten or five is not now if I want to eat pani puri or ice cream or chocolates it just makes a lot of sense to carry ten rupees notes right I mean the pani puri by a guy outside my house doesn't even accept 2,000 rupees note on the other hand if I'm traveling from one place to another and let's say I'm not buying anything just want to carry money from one place to another now it makes a lot of sense to carry higher denominations if I just carry 10 rupees not my wallet will get filled up and I will have no space in a similar manner the functions needed to carry out by the cell only require a little bit of energy and so ATP is perfect for them on the other hand when energy needs to be transported from one place to another we will transport it in terms of glucose because it's compact if everything was in terms of ATP it would they just take up a lot of space and turns out ATP is also a bulky molecule and so you know when you're transferring energy from one part of the body to another or from one cell to another usually it is in glucose it's compact carries a lot of energy but when the cell wants to use that energy first it will store it into ATP and then you use ATP's and another important reason to use ATP is releasing the energy from glucose is not a one-step process we just saw that glucose has to first broken into pyruvate then the pyruvate has to enter into mitochondria the mitochondria then carries out of serie series of reactions to give energy right so this is not incident on the other hand ATP is well to break ATP open it just one step process so it gives us instant energy whenever cell wants it so it just makes a lot of sense to use ATP's and so this means if we go back the mitochondria does not just release that energy mitochondria puts that energy into the ATP and then it gives ATP out and then that ATP will be used up by the cell whenever you know it wants to do any work and just to give you some numbers the ATP is produced by the mitochondria per glucose so for every glucose molecule we get about 36 ATP's over here and when the glucose gets broken into pyruvate in the cytoplasm we get about two ATP's over here this also is given into ATP so you can see in the aerobic respiration you get total to plus 36 about 38 ATP's although that's a textbook number though in reality it may vary it could definitely be less than that but during the fermentation process we only get two ATP's in total and that's because remember if you break pyruvate without oxygen we do not get any further energy and so in the entire fermentation process only two ATP's and which is why most of our energy comes due to aerobic respiration for which mitochondria's are super important to keep us alive all right so what did we learn in this video we saw the first step of respiration is glycolysis where glucose is broken down into pyruvate molecules releasing a little bit of energy and then we saw that if the pyruvate gets broken in the absence of oxygen we get fermentation process and all of this anaerobic stuff happens in the cytoplasm on the other hand if the pyruvate enters into Andreea in the presence of oxygen then we get aerobic respiration where a lot of energy is released so aerobic happens inside the mitochondria and finally we saw that the energy released in the respiration process is stored in ATP molecules they act like tiny packets of instant energy whenever the cells wanted