Main content
High school biology - NGSS
Course: High school biology - NGSS > Unit 3
Lesson 2: Formation of biomoleculesFormation of biomolecules
Sugar molecules contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. Created by Sal Khan.
Want to join the conversation?
- I have no video to put this- So suggestion for future class course!
Psychology?(10 votes) - Why is Sal so good at teaching? This finally made it all click for me.(3 votes)
- Please correct me if i'm wrong. So in order for a plant to change its food into energy. A Rubisco Enzyme or an enzyme in general needs to be present??(2 votes)
- You are absolutely correct! They also need to be present for them to be able to utilize that energy(0 votes)
- What is biomolecule formation?(1 vote)
- why is this guy's voice so soothing?(1 vote)
- At, the ratio of carbohydrate is like CnH2nOn. 3:30
But what I can't understand is the acetic acid, which is C2H4O2(or CH3COOH ), also follows that ratio. And to the best of my knowledge, I think it is an acid rather than carbohydrate.
So, how is this possible?
Can somebody help me?(1 vote)- Monosaccharides are the simplest carbohydrates which cannot be hydrolyzed into smaller units. They usually have 3-7 carbon atoms per molecule. They are the compounds of carbon, hydrogen, and oxygen in which hydrogen and oxygen occur in the ratio of 2:1 as in a molecule of water. Thus, they are also known as hydrates of carbon.
A fatty acid is an unbranched chain of carbon atoms with each carbon atom forming four bonds to other atoms It has a carboxylic group at one end and and the hydrogen atom bonded to all or most carbon atoms.
Fats are formed as a result of esterification of fatty acids with various alcohols and glycerol is one of the alcohols which forms the true fats.(0 votes)
- how are bio molecules are formed and what ARE the chemical properties of it(0 votes)
- whats the yellow dot?
that moves with curser(0 votes)- Its the curse of the curser! Hahahaha!(0 votes)
- And so I must have extracted some energy and matter from it, but you just said all organisms, Sal, and I'm looking outside of a window and I see a tree and a tree does not have a mouth.
A tree is an organism. How does it get its food? And the answer you might already realize is that the tree can make its own food through photosynthesis.(0 votes)- Roots! Its not a mouth but its a tree's version of it! Though they make there own food, They do NOT make there own water. There roots are considered the mouth they use to drink water from the ground, which is how the leaves grow.(4 votes)
Video transcript
- [Sal] So all organisms
need food to survive. Now, for some of you, this
might be pretty obvious. You realize what might happen to your body if you don't get food. You might realize that you
need that food for both energy and you need that to actually
build up your actual body. So you need it for matter as well. But some of you might be thinking, all right, I have a mouth. I understand where the food goes. I also understand what's left over when I'm done with the food. And so I must have extracted
some energy and matter from it, but you just said all organisms, Sal, and I'm looking outside of a window and I see a tree and a
tree does not have a mouth. A tree is an organism. How does it get its food? And the answer you might already realize is that the tree can make its own food
through photosynthesis. We've seen this in other videos. You have carbon dioxide in
the air and you have water. And the presence of energy
in the form of sunlight, through the process of
photosynthesis, would produce glucose and molecular oxygen as a byproduct. And you can count the various carbons that are in this dark gray color. Oxygen's in this red
color and hydrogen's here. And you can see that
everything all adds up. You have one, two, three,
four, five six carbons here in the six carbon dioxide molecules. And then you could see in this glucose, you have one, two, three,
four, five, six carbons. I encourage you to pause the video and make sure that the
oxygens are all accounted for between the glucose molecule
and this molecular oxygen, and that the hydrogens
are all accounted for. And so a plant can produce its own food, and then when they need it, they can metabolize that food through a process of respiration. It's really important to realize that respiration does
not just occur in your and my bodies. Even organisms like plants
need to break down the food that they produced if they
wanna use it for energy. Now, the question you might have is, where is the energy here? Just as it takes energy
to rearrange these atoms and molecules into glucose,
under the right conditions, through a metabolic pathway, you can go the other way around. And chemically, that will release
energy, which even a plant which isn't running around,
it isn't doing jumping jacks, it isn't talking. It needs energy just to be alive. All living things need
energy in order to exist, in order to maintain their
cells, in order to reproduce. So many of you all have
probably heard the term carbohydrate when we're
thinking about food or when we're thinking
about an energy context. And it's important to note
that this glucose molecule here is an example of a carbohydrate. It's not the only example of it, but one question might be, why is it even called a carbohydrate? Well, when you break
down the different parts, it seems like it would involve carbon. Right over here, you have the carbo part. And it seems like it's somehow involving water: carbohydrate. And that's because early chemists, they didn't actually
understand the structure of a carbohydrate the way that we do now. All they saw was the
ratio between the carbons, the hydrogens and the oxygens. That for every carbon. So let's say there are N carbons, there's going to be
twice as many hydrogens, and N oxygens as well. So one thing, one way to think about it, for every single carbon, you have an H2O. So every carbon, you have a water. So that's why early chemists, when they saw this ratio,
they called it carbohydrates. Glucose is a very simple carbohydrate, but you can make up chains
of things like glucose to build up more complex carbohydrates. Now it's important to realize that these types of molecules
aren't just used for energy. They can also be used for matter. The more that you study biochemistry, you're going to see a lot
of different molecules that are made up of these building blocks of carbons, oxygens, and hydrogens. And sometimes you might
even recognize structures that look a little bit like glucose, or look like things that
have been put together from some of these basic building blocks. For example, this molecule right over here is known as thymidine monophosphate, and it's a fancy name. But you can look at the
building blocks here. The monophosphate, you
have a phosphate group right over here. Thymidine comes from this
part of the molecule. It's sometimes known as a nitrogenous base because it has nitrogen that
you see in blue over here. And then right over here,
connecting the pieces, you have a five carbon sugar: Ribose. Now glucose is a six carbon sugar, Ribose is a five carbon sugar, but there are metabolic pathways where you can go from five carbon sugars to six carbon sugars, and back and forth. And what's interesting about things like thymidine monophosphate is it is a building block for something that is very, very, very important: DNA. Thymidine monophosphate is a nucleotide with a nitrogenous base thymine. You put a bunch of these
nucleotides together, not all of them have a
nitrogenous base of thymine here, but they form this double
helix structure that we study in a lot of depth in
many, many other videos. And you might already realize that DNA is the molecular basis of inheritance. We could not be who we are
without these types of molecules. Now, what's also
interesting is how do these different constituent
molecules rearrange themselves, even in the presence of energy,
to make other molecules? Or to get energy, how do
they re-rearrange themselves to release that energy? And all of these metabolic
pathways are facilitated by what are known as enzymes. And just to give an example of an enzyme this big thing here is commonly known as the Rubisco enzyme. Now you don't have to know its name at this point in your careers, but this is one of the enzymes
in the metabolic pathways that's able to take carbon dioxide and attach it to another molecule that eventually can get us to
forming a glucose molecule. And what happens here is
the various constituents attach to different
parts of these enzymes. And these enzymes change
their shape as they attach to certain things and they
can jam things together. They can synthesize other molecules or they can even help to break them apart. And it all comes full circle because the enzymes
themselves, these are proteins. These are made up of amino acids, which themselves are made up of a lot of these building block molecules that contain your carbons, your oxygens, and your hydrogens in them. I'll let you go now. But the important thing is to realize is that we have whole universes occurring in our cells, and that
all of these molecules and biological systems are
connected in different ways. And you have a whole series of metabolic pathways that are facilitated by enzymes that take one set
of things and step-by-step, put them together or break them apart in order to do all of the
different biological functions that we know are necessary for life.