Main content
High school biology
Course: High school biology > Unit 3
Lesson 6: Cellular respirationLactic acid fermentation
Glycolysis breaks down glucose into two pyruvate molecules, producing ATP and reducing NAD to NADH. If oxygen is unavailable, lactic acid fermentation occurs, recycling pyruvate and NADH to produce more NAD+ for glycolysis. This process is common in organisms like lactobacillus, which is used in making yogurt, kimchi, and sauerkraut. Created by Sal Khan.
Want to join the conversation?
- Can anyone explain, in simpler terms, how the pyruvate is involved in the reduction of NAD+ into NADH?(28 votes)
- The pyruvate oxidizes the NADH back to NAD+ by taking a hydrogen and two electrons from it. It then restructures some of its bonds, and turns into lactate; this process regenerates NAD+ so that glycolysis can continue. :)(47 votes)
- No specific time in the video. Just a general question about Lactic Acid and Lactate as it relates to physical activity. There's a supplement called Sports Legs that helps physical performance. The main ingredient is Lactate. Lactate (I've learned from Kahn) is produced by reducing Pyruvate, by adding Hydrogen to Pyruvate. This happens in Lactic Acid Fermentation (LAF if you will). The video explains well how the benefit of LAF is the regeneration of NAD+. Lactate is simply a byproduct. So my question finally: by what mechanism does taking a Lactate supplement enhance physical performance?(11 votes)
- In the reaction pyruvic acid +NADH <-> lactic acid + NAD+, the enzyme lactate dehydrogenase can catalyze the reduction of pyruvate as well as oxidation of lactate. The equilibrium shift toward the forward or reverse reaction depends on the substrate concentration. if there a lot of lactate, it will be oxidized and converted into pyruvate, meaning more ATP will be synthesized during the strenuous exercise. That is the mechanism by which lactate enhances physical performance.(20 votes)
- So many complex models! my Brain is fried.(◕‿◕)(12 votes)
- So the 2P is the pyruvic acid? Just a random question I have.(6 votes)
- Do you allude to the first formula?
There 2Pi means 2 inorganic phosphates.
2 pyruvates are denoted as '2pyruvate'.(9 votes)
- Can anyone give me a vocabulary of what is
.NaDH
.ATP?
thank you(6 votes)- Nicotinamide Adenine Dinucleotide Hydrogen
Adenine Tri Phosphate(8 votes)
- Is lactate fermentation and lactic acid fermentation same?(9 votes)
- Yes, it is.
Terminology is the only difference.
'Lactate' is the conjugate base of 'lactic acid'.
Lactate is the same a lactic acid minus one proton.(2 votes)
- Then from glycolisys you can get either piruvate or piruvic acid?(3 votes)
- Glycolysis creates pyruvate, and that pyruvate can undergo an additional reaction to become pyruvic acid.(12 votes)
- Lactic acid makes your muscles feel sore. Does it take a while for the body to get rid of it, because sometimes you can feel sore after doing something for a while, and the sore feeling is still there for even days. Why does that happen? How does your body get rid of it?(5 votes)
- The lactic acid travels through the blood towards the liver. Oxygen is used to reduce the amount of lactic acid. Here, the lactic acid can be oxidised to release CO2 which is then breathed out or it can be converted into glucose, and then it can be stored as glycogen for future use.(7 votes)
- This video seems assume prior knowledge of things like ATP, NADH (or NAD+) and Pyruvate. Where can I learn about these things from the introductory level?(5 votes)
- This can also be found in the High school biology course, or if not, you can see in the college biology course.(3 votes)
- At, 8:41
Why does the carbon need to let go of it's double bond if the other carbon has a double bond? In general, I just don't get this specific part.
Thanks(5 votes)
Video transcript
- When we first learned about glycolysis, we saw that if you start
with a molecule of glucose, and you carry forward with glycolysis, that glucose, which is a six carbon sugar, it's got oxygens and hydrogens as well, but it's a six carbon sugar, it gets split into two pyruvate molecules, and each pyruvate has three carbons. And in the process of doing
so, we're able to produce a net of two ATPs. We use two ATPs in the investment phase, then we produce four
ATPs in the payoff phase for a net of two ATPs. But that's not all that happens. You also have two NAD molecules, nicotinamide adenine dinucleotide, getting reduced to NADH. And why is it getting reduced? Well we see it's a positive,
it's a positive molecule here, it becomes a neutral
molecule, it gains electrons. So this over here becomes reduced. Now, the next question you might have is, "Well what happens next?" Well if you're me or you,
you might continue on and if you have enough
oxygen you'll continue on with cellular respiration. Things move on to the mitochondria because the pyruvates and the NADHs can be can also be used to produce more ATP. The pyruvate gets more broken down in the Krebs cycle, also known
as the citric acid cycle. And also and that produces ATPs and NADHs and the NADHs can participate in the electron transport
chain which eventually leads to even more ATPs being produced. But what if you're in a situation that maybe we don't have oxygen, or maybe you're just like,
you're just the type of organism that doesn't like to use
oxygen or doesn't know how to use oxygen, what happens next? Well what we're gonna
talk about in this video is one potential pathway, and that's lactic acid fermentation, which is one of the two
major forms of fermentation. Lactic acid fermentation. Fermen, lactic acid fermenation. And lactic acid fermentation
isn't so much about producing more ATPs, it's more about recycling the pyruvate and the NADH. Even though the pyruvate and NADH can, it has free energy to give
that could be converted to ATP, if we're gonna be doing
lactic acid fermentation, we kind of give up on that, and then we actually use the pyruvate to oxidize the NADH to become NAD+ so that we have more NAD+ for
glycolysis to occur again. So organisms that do fermentation, their main energy source
is the glycolysis, and then the fermentation
is all about recycling what it views as waste
materials, pyruvate and NADH, so that you can have more NAD to have glycolysis occurring again. Now, you might say, "Oh
is this some strange thing "that we don't encounter much in life?" Probably everyday or
maybe at least every week, you probably consume some organisms that perform lactic acid fermentation. This right over here, this
is a picture of yogurt. Yogurt is what we get when you have species of lactobacillus
digesting the sugars in the milk and then they're performing glycolysis and then they perform
lactic acid fermentation, converting the pyruvate into lactate. Or if you view the conjugate
acid version of it, lactic acid, you could say
pyruvic acid, lactic acid. Pyruvate is the conjugate
base for pyruvic acid. Lactate is the conjugate
base for lactic acid. But that's what's giving it its uniquely yogurt taste, it's this bacteria here, the lactobacillus, this is just one variation of it, and there's slightly different
variations of lactobacillus that do each of these foods. But this is yogurt, this right over here, if you're into Korean
food, this is kimchi, this uses a variation of lactobacillus to once again perform
lactic acid fermentation on the sugars in the vegetables. This is sauerkraut, once again, a variation of lactobacillus,
a species of lactobacillus performing lactic acid fermentation on the sugars in the cabbage. Sauerkraut literally
means, "sour cabbage." That's what it is. So let's think a little bit
more about what's going on. So as I mentioned, it's
all about taking your pyruvate or pyruvic acid, the way I've drawn it right
over here, this is pyruvic acid. Pyruvic, pyruvic acid, right over here. Because we have our hydrogen proton, if we lose our hydrogen proton, this is the same thing drawn again, but now we don't have
the hydrogen proton here, this oxygen kept that electron, and all of the other hydrogens,
all the hydrogens here, they are implicit. So the three hydrogens here, they're implicit on this carbon. I'm just drawing it with
a different notation. And so this one, where
we've lost the proton, we would call this pyruvate. Pyruvate. And what we have happening is that the pyruvic acid, or the pyruvate is used to oxidize the NADH, take away a hydride, take
away an electron from, actually more than just electron but net, you have the NADH losing electrons. And so if it's losing electrons,
it's getting oxidized. So it's oxidized. So that the NAD+ can be
reused in glycolysis. And when pyruvic acid
does this to the NADH, it gets reduced, it gets reduced, it gets reduced, it gains electrons and, if we're thinking
about the acid forms, it would turn into this right
over here is lactic acid. Lactic, lactic, lactic acid. And that's why we call it
lactic acid fermentation, 'cause you're taking that pyruvate, if you had oxygen around,
or if you knew how to do it, use the oxygen, you might continue on with cellular respiration
and use that for energy. But lactic acid fermentation, we use it to oxidize the NADH so we get more NAD+. And let's just now get
a better appreciation for all of this happens. So the first thing that I want to show you because a lot of times in biology classes, you just learn NAD, NADH, and it just seems like this
somewhat abstract molecule. But this is a picture of it. This is nicotinamide adenine dinucleotide. And it's kind of a mouthful, but when you break it down,
you see these patterns that you see repeatedly in biology. This is, this right over here is what gives us the nicotinamide. This right over here is
our good friend adenine. We see that in ATP, we see that also as one of the nitrogenous
bases in DNA and RNA. You have ribose right over here, this is derived from ribose. You have a phosphate group,
you have a phosphate group. So, nicotinamide, adenine, you have a nucleotide right over there, you have another nucleotide
right over there, so it's nicotine adenine dinucleotide. So the name makes a lot of sense. But I wanted to show this to you to get an appreciation that it's a fairly involved molecule over here. You know sometimes when you
just see the letters, NAD, you don't get a full appreciation for it. And it's a coenzyme, and we learned about coenzymes in other videos. Where the enzyme that catalyzes this is lactic acid dehydrogenase. And remember enzymes are for the most part just
these big protein structures, so all folded up in all different ways. And then you have the NAD, the NAD, or in the case of lactic acid
fermentation right over here, you have the NADH, so this
is the NADH right over here, and I'm just kind of drawing
what it could look like. This isn't actually what it looks like. It's going to react with the pyruvate. And let me do that in a... It's going to react with the pyruvate and by doing so, even though the pyruvate you might formally consider to be the substrate of the enzyme, the whole purpose is to get
your NADH to be oxidized, to lose a hydrogen and an extra electron. So a hydrogen proton, a hydrogen electron, and another electron. So really lose a hydride. So how does that happen? Well it happens because you
have this nitrogen here, it has an extra lone pair of electrons, so it can form, that lone
pair can form a double bond right over there. Well if that carbon, if
this now has a double bond, this carbon has to let
go of this double bond, so that goes over there. That goes over there. And then if there's now
a double bond over here, is which we see in the end product, this carbon's gonna have
to let go of a bond. And it lets go of the entire covalent bond with this hydrogen, so
both of the electrons. So it's gonna let go of
both of these electrons, right over here. And then both of those electrons can attach to this
carbon right over there. Now that carbon forms a new covalent bond, it has to let go of one
of its covalent bonds and so it could let of one of these double bonds with this oxygen. And those could either
go back to that oxygen, or more likely, they can be
used to grab a hydrogen proton maybe from a passing water
molecule or hydronium molecule. And so, I can draw it like this. Could grab a hydrogen, a hydrogen proton. And so what do we end up with? Well, that lone pair of
electrons is now there, we now have a double
bond right over there, now we've lost one of these hydrogens, I obviously haven't drawn
all of the hydrogens in these molecules. So now we have, now we are back to NAD. And since this nitrogen has essentially, it was neutral before, but now it is instead of keeping these two electrons, it's sharing these two electrons, so now it's going to
have a positive charge. So this is why we call it NAD+. It lost a hydrogen and an electron. A hydrogen, the hydrogen's
electron, and another electron so now it has a positive charge. And the pyruvate is now the conjugate, with the way I've drawn
it here, since we've, I show it deprotonated, I would say that this is now lactate. This is now lactate. If we had our proton over here, we would call it lactic acid. So anyway, hopefully you
get a kick out of this, I know I do, it's kind of interesting that all of this can happen. Lactobacillus isn't the only
organism that does this, but this is a fairly useful
organism for all sorts of delicious food that we have. I just get an appreciation, my mind's always blown that these fairly complex processes
are constantly occurring in nature all around us, sometimes even in our own bodies. And these organisms that we
would consider quite small, for example, this
lactobacillus right over here, this is on the order of five to 10 micrometers. Five micrometers, so five
millionths of a meter.