Main content
Health and medicine
Course: Health and medicine > Unit 5
Lesson 3: Emphysema (COPD)Emphysema diagnosis
How do we know a patient has emphysema? Learn how the lungs in chest x-rays look hyperinflated, how spirometry can reveal decreased lung function, and what all those blood tests mean. Created by Amy Fan.
Want to join the conversation?
- How is a diagnosis of COPD differentiated from that of asthma using spirometry? I understand the difference in the two disorders, but the indicators from spirometry tests seem very similar. Can they be differentiated using spirometry alone, or do COPD and asthma spirometry results have distinct characteristics?(2 votes)
- to diagnose emphysema the FEV1/FVC ratio must be <.7 (not 75-80%) .For asthma, the test is done pre and post bronchodilator administration . A better response post bronchodilators indicates an asthmatic component.(8 votes)
- Does FVC not increase due to difficulty getting all the air out?(1 vote)
- how do you get emphasema(1 vote)
- What If when "Bob" is having a hard time breathing What if the machine runs out of air what would you do then And what would happen to him?(1 vote)
- poor mister bob
he has asthma and emphysema(1 vote) - so is emphysema curable?
like with that alpha-1 thing?(1 vote) - Just to be sure, isn't the ratio she proposes to calculate what we call the "Tiffeneau-Pinelli index" ?(1 vote)
- Can emphysema be caused by unknown reasons?(0 votes)
- no, it is not caused by unknown reason....the only unknown reason identified so far has been Genetic.(0 votes)
- So: Full Vital Capacity doesn't exist, but Forced Vital Capacity does, am I correct?(0 votes)
Video transcript
Voiceover: So if somebody
is short of breath and we want to find out
could they have emphysema the first thing we might
get is a chest x-ray. And let's just look at
what a normal chest x-ray might look like. Here you see the shape
of the lungs like that and this muscle down
here is the diaphragm. It helps us breathe by moving down. In a person with emphysema
their x-ray, their picture is going to look more like this. Look at how hyper-inflated
these lungs are. They look like puffed out bags. Right. So here let's write hyper-inflated and that's one of the
first signs of emphysema or really obstructive disease because all the air is stuck back here. Because these airways have collapses and are no longer elastic
so the air stuck back here makes the lung take on this kind of shape. And look at how it's pressing
down on the diaphragm. So it's no longer this nice curve. Now it's kind of flat and this makes it harder to breathe because they have less room to go down. The chest cavity is so full and round it's hard for them to
make it a little bigger to take more of a breath
so look here in their neck. Do you see how the angle here is different from a normal person's neck? That's because they're using extra muscles to help themselves breathe. Extra muscles to further expand that chest to breathe in and I'll hear them they'll be using their ab muscles to try to force some
of that air out because the natural recoil of the lungs is gone. So this is our x-ray. It's a good entry point
into working something up because it's cheap, it's easy, and all the person has to
do is just stand there. Then next this person might be doing some lung function tests and the important one for this one would be
forced expiratory test. And here's how it works. So you have a person- I like to give my stick
figures a little bit of hair. I think it makes them
look a little better. So we have Mr. Bob here. He says, "I can't breathe, "it's hard for me to breathe out." So we give him a mouthpiece
to put in his mouth. It's connected to this tube which is then connected to a machine in a nutshell. And we have Mr. Bob
take the biggest breath he can possibly take fill
up that chest all the way, hold it for a second and then suddenly and forcefully blow it out as fast and as much as he could. I've actually done this test when they thought I might have had asthma. It turns out I didn't, but
this test was miserable because they're trying to get you to get all the air out in here
so even when you think you have no more left they tell you to keep going, keep going, it just feels like you're going to die, it's terrible, but it's
important for them to do that because we're looking for 2 values. Number 1 we want the full vital capacity. What that means is just all the air that he could possibly breathe out. From the top of the breath to when he can't get anymore out that's the FVC. And then we also want
the FEV1 which stands for forced expiratory volume 1 and that's because believe it or not even though you were
struggling that entire time to get more air out most of the air came out in the first second. This is like so we have
candles here like on a cake. When you're blowing out a candle it goes out in the first second. Right. And if it doesn't go out
and you just keep blowing without taking a new breath in nothing is going to happen. So in the normal lung about
80% of the air comes out in the first second so FEV1/FVC should be around 80%, but in emphysema, actually in all obstructive diseases this ratio changes. So first the full vital
capacity definitely goes down. In obstructive disease
you can get less air out of the lungs so
that absolute difference between the top of the
breath and the bottom it really decreases, but more importantly the FEV1 here goes down much more. That's because that first
second of getting most of the air out really relies
on the recoil of the lungs and since that's gone the FEV1 here takes a much bigger hit. You know, let's just put some numbers to this whole thing so
that we can see it better. Let's say that ... what
was his name Bob, Mr. Bob let's say his full vital
capacity was 5 litres so he usually should be
able to get 4 of it out in a normal functioning lung, but here because he
has emphysema let's say his full vital capacity goes down to 4, but this FEV1 is going
to go down even more. It goes from 4 to let's say 2. 2 over 4 that's 50% so we
want it from 80% to 50%. So do you see how even
though both went down this ratio goes down even further and that's diagnostic
for obstructive disease so in emphysema the ratio
between FEV1 and FVC is going to be less than about 75 to 80%. Actually how much it goes down can tell us how severe
Mr. Bob's disease is. Now emphysema is usually
related to smoking or working in an environment
with a lot of irritants, but if Mr. Bob here doesn't smoke and doesn't work in that
kind of an environment and we want to know why
does he have emphysema a possible blood test we could do is measure his Alpha-1 Antitrypsin level because the other reason somebody would have emphysema without smoking or being exposed to irritants is to have Alpha-1 Antitrypsin deficiency. All right, really quickly,
it would have elastin giving the elastic quality of the lung being destroyed in emphysema because it's usually cleaved by- let's change the color here- elastase ... I'll have to use red because it's like the
culprit in this disease that's going crazy eating
up all the elastin. And usually this elastase
is kept under check by Alpha-1 Antitrypsin this compound made in the liver that stops the elastase. So Alpha-1 Antitrypsin
usually allows there to be more elastin in this relationship. Some people can have a deficiency of Alpha-1 Antitrypsin and that's how they get emphysema so if we really want to find out why and we can't explain otherwise we can look for the
Alpha-1 Antitrypsin level in Mr. Bob over here. Now in terms of other blood tests there is something we can
do called a blood gas. I'm going to put it in parentheses here because it's not going to be the most routinely done thing because first of all it's more expensive than just a regular blood
test and it's painful. You're getting blood from the artery instead of the vein
which is more sensitive so we're only going to do this is somebody is in the hospital for a bad case of exacerbated emphysema, but blood gas will allow us to find out exactly how much oxygen and carbon dioxide is in the blood. But usually if this
person is still doing okay and we don't need to get
the blood gas right away we could get what's called
a complete blood count. This is from the vein
so it's pretty routine. It's not as painful and here we don't get to directly see how much
oxygen and carbon dioxide is there, but there is a
compound we can test for it's called the bicarb, bicarbonate and this basically would increase if the body is having too much C02 to balance how acidic it is and in emphysema there
is usually increased C02 because it's not getting breathed out. So this is easier to do than a blood gas, but still we usually don't routinely do it unless this person is in
the hospital not doing well. These tests can tell us more of a snapshot of how this person is breathing and doing at the moment, but for
our diagnostic purposes the x-ray, the pulmonary function tests and even the Alpha-1 antitrypsin will be more valuable.